Improvement of Widening Joint Design and Construction Practices for Flexible Pavements

Florida DOT Project #BDX93

FINAL REPORT

September 2015

605 Suwannee Street, MS 20 Tallahassee, Florida 32399-0450

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
Purpose and Scope	1
LITERATURE REVIEW	2
Longitudinal Construction Joints	
Stabilization of Subgrade and Pavement Layers	20
Pavement Edge-drains and Subsurface Drainage	24
Pavement-Edge Drop-Offs	27
Geosynthetic Reinforcement	31
Construction Techniques and Equipment	36
Cross Slopes Error! Bookmark	not defined.
Embankment Widening	
QUESTIONNAIRE RESPONSES	47
Selection of widening projects on flexible pavement	
General experience with lane widening projects	48
Widening design	
Quality Control Testing	56
Subgrade and Base Stabilization.	57
REFERENCES	58
Appendix A. Questionnaire Responses	A-1
Appendix B. Sample Flexible Pavement Widening Design Cross Sections	B-1
Appendix C. Guidebook for Lane Widening Projects on Flexible Pavement in Floric	daC-1
Appendix D. Implementation Plan	D-1

LIST OF TABLES

<u>Table</u>	<u>Page</u>
Table 1. Comparison of butt and wedge joint densities.	4
Table 2. Longitudinal joint techniques evaluated.	7
Table 3. Joint types preferred by indicated state DOTs	16
Table 4. Thompson Procedure minimum strength requirements for lime stabilization	20
Table 5. Recommended design criteria for TxDOT full depth recycling.	23
Table 6. Traffic control needs in construction zones for edge drop-off conditions	31
Table 7. Mechanical properties of geosynthetic reinforcement.	33
Table 8. Summary of Nevada experience with reflective cracking mitigation techniques	35
Table 9. Trunk Route 1 accident statistics prior to treatment.	40
Table 10. Aggregate grading.	42
Table 11. Allowable roadway cross slopes.	42
Table 12. Embankment widening technical problems.	45
Table 13. Overall agency experience with lane widening.	47
Table 14. Overall agency experience with lane widening.	48
Table 15. Problems reported at widening joint.	49
Table 16. Treatments used to improve joint performance	52
Table 17. Design methods used for widened pavement sections	53
Table 18. Most common data collected in routine structural evaluations	55
Table 19. Most common data collected in routine structural evaluations.	57

LIST OF FIGURES

<u>Figure</u>	Page
Figure 1. Alternative notched wedge joint	2
Figure 2. Notched wedge forming device.	3
Figure 3. Wedge compaction device.	3
Figure 4. Operating roller drum edge inside the edge of unsupported pavement lane	8
Figure 5. Roller drum extended over unsupported edge of pilot lane.	9
Figure 6. Mix overlap when placing second lane.	10
Figure 7. Improper raking of the longitudinal joint.	10
Figure 8. Techniques for compacting HMA longitudinal joints.	11
Figure 9. Low density area of longitudinal joint	12
Figure 10. Tapered flexible joint.	12
Figure 11. Vertical joint type.	13
Figure 12. Tapered joint type.	13
Figure 14. Typical longitudinal crack observed.	15
Figure 15. Joint types.	15
Figure 16. Mean density profile for Loop 323 in Tyler, Texas.	17
Figure 17. SR 400 typical widening section Volusia County, FL.	18
Figure 19. Diagonal reflective cracking in transition area of SR 400 widening	19
Figure 20. Mix design flow chart for Thompson Procedure.	21
Figure 21. Widening flexible pavements in poor condition using full depth recycling	22
Figure 22. Painted arrow reference marker	25
Figure 23. Large headwall for outlet pipe.	25
Figure 24. Recommended drain placement along vertical cut outside of pavement edge	26
Figure 25. Safety edge.	27
Figure 26. Minimum benefit-cost ratios for the safety edge treatment as a function of AADT.	29
Figure 27. Maximum benefit-cost ratios for the safety edge treatment as a function of AADT	29
Figure 28. Typical roadway widening profile at intersections.	32
Figure 29. Block cracking present prior to rehabilitation and widening.	33
Figure 30. Percent reflection of lane widening joints by length.	34
Figure 31. Dynapac® CC122	36
Figure 32. Caterpillar® CP-323C.	
Figure 33. Bomag [®] BW 124 PDH.	
Figure 34. Hamm [®] Model 2220 D.	
Figure 35. Hamm [®] Model 2222 DS	
Figure 36. Trench joint repair detail.	38
Figure 38. Coarse-graded slurry placement.	40

Figure 39. Finished edge widening overview.	41
Figure 40. Standard FDOT freeway cross slopes.	43
Figure 41. Recommended slope inclination as a function of plasticity.	46
Figure 42. Notched edge cross section (courtesy of Kentucky DOT).	50
Figure 43. Position joint farther into existing pavement for an interface with more sou	nd material
and space for compaction [5]	51

EXECUTIVE SUMMARY

Few guidelines exist statewide, or even nationwide, for assisting designers in selecting appropriate roadway widening techniques. Current Florida Department of Transportation (FDOT) specifications provide a basic framework for widening hot-mix asphalt (HMA) pavements. However, the existing guidance does not address alternative construction techniques and treatments used in current practice for constructing more durable longitudinal joints.

This report identifies factors impacting the performance of flexible road widening with a focus on the longitudinal joint between existing pavements and new widening sections. A review of available literature related to lane widening of HMA roadway pavements was conducted, and an eight-page questionnaire was developed and distributed to State highway agencies (SHAs), research centers, and industry to determine the state-of-the-practice regarding the design and construction of longitudinal joints in widened roadway sections.

The following is a summary of recommendations for longitudinal joint design and construction from practices identified in literature and responses to the questionnaire:

Planning and Design

- 1. Match widened design sections to existing pavement sections. This will typically provide good functional results if drainage is provided for, and if the existing section is structurally adequate.
- 2. Perform thorough site investigations. Pavements often differ from design, and undocumented widenings may have been performed by maintenance in the past. Compare plans with core samples and ground penetrating radar (GPR) surveys. Deflection testing and a field survey to identify distress types, severities, and locations are strongly recommended. Widening a weak pavement may be false economy.
- 3. Consider using less permeable surface mixes by using the smallest nominal maximum aggregate size (NMAS) mix that is appropriate, using a finer gradation, and lower design air void level for additional binder. Use lift thicknesses that are a minimum of four times the NMAS of coarse gradation mixes and three times the NMAS for fine gradation mixes.
- 4. Pay for tack coat as a separate bid item to facilitate having a sufficient amount of material applied.
- 5. Use concrete base in sections where widening is less than 4 feet wide.
- 6. Consider full depth reclamation and overlay for widening severely deteriorated pavements. This practice is popular in Texas. Texas reclaims, widens, and cement stabilizes the existing pavement material and uses it as a strong subbase followed by a flexible base with a two-course surface treatment or hot-mix asphalt depending on the traffic needs.

Joint Type and Location

- 1. Avoid placing the joint in a wheel path. Consider shifting widening to one side of the roadway to prevent this condition.
- 2. Mill or cut back existing pavement a sufficient distance to reach more stable and workable face to compact material against. This will also allow more space for suitable

- compaction equipment. Milling equipment may produce more even cut lines and cleaner joint faces than grader blades.
- 3. Stagger widening joints into the existing pavement to avoid constructing a weak vertical plane into the pavement cross-section. Offset vertical joints at least 6 inches apart between successive layers.
- 4. Consider using notched or wedge joints. These joints are more effective at preventing reflective cracking, differential settlement, and have shown better performance than traditional butt joints. Wedge joints require slightly higher operator proficiency to construct. All have been successfully used on recent widening projects in Wyoming.
- 5. Overlay the existing pavement and widened section to bridge and improve the performance of the widening joint.

Placing Hot-Mix Asphalt

- 1. A joint matcher provides the best means of placing material at the correct depth to match cold joints. This is most optimal when paving the surface lift.
- 2. Material from the second pass should overlap joints that have been milled or cut back by approximately 0.5 inch. Notched wedge joints should have 0.5 to 1.5 inches of material overlap. Avoid luting or raking the overlapped material.
- 3. Remove excess overlapped material with a flat-end shovel. Do not broadcast material across the mat.
- 4. Paver auger gates and tunnels should be extended to within 12 to 18 inches of the end gate to ensure material is not being pushed and segregated. The vibrator screed should be turned on all the time.

Joint Compaction

- 1. Build up hot-side of the joint so that the surface is approximately 0.1-inch higher after rolling. This ensures the joint was not starved of material or bridging of the roller occurred.
- 2. Compact the confined edge of a joint with the first pass of a vibratory roller drum on the hot mat, but stay back from the joint 6 to 8 inches on the first pass. Overlap onto the cold mat 4 to 6 inches on the second pass.
- 3. Use a rubber tire roller when intermediate rolling to knead loose material into the joint. Straddle the joint with the back outside tire, and align the front outside tire just inside the edge of the joint.

Joint Treatments

- 1. Hot-applied rubberized asphalt joint adhesives are the best material for improving joint performance; however, they are costly.
- 2. Double tack joint faces when using an asphalt emulsion.
- 3. At minimum, tack the vertical face of the joint with the same material being used to tack the mat
- 4. Apply a surface sealer product or overband joints with densities less than 92% of TMD with a PG binder to increase longevity of joint.
- 5. Infrared joint heating has proven to increase compaction at the joint by 1 to 2% in Tennessee, Canada, and New England. This treatment is most beneficial in cold weather paving.

6. Keep longitudinal cracks that appear at the joint sealed.

Quality Control

- 1. Ensure satisfactory materials are used. Monitor and control subgrade moisture and density.
- 2. Conduct a pre-paving meeting to discuss methods to be employed during construction for ensuring proper construction of the longitudinal joint. Discuss the joint type to be used and role each paving crew member has in achieving good joint density.
- 3. Determine optimum rolling pattern for density at the joint, and construct a test strip.
- 4. Monitor density in the field with a nuclear density gauge correlated to cores. Recommend placing the gauge parallel to the joint and offsetting the gauge 2 inches from the joint to ensure the gauge is seated. Take an average of 2 or 4 one-minute readings. Rotate the gauge 180-degrees between each reading.

In addition to this technical report (product of Tasks 1 and 2), the contract for Project # BDX 93 called for the development of a guide document (Task 3) for the design and construction of the longitudinal joint in lane widening projects. Additionally, an implementation plan was prepared that can be used to put the new technology into practice. These documents are attached to this report as special appendices, such that they can be separated as stand-alone documents.

INTRODUCTION

Purpose and Scope

The purpose of most lane widening projects is to enhance mobility, improve traffic flow and increase safety. Additional highway lanes, safety improvements, and traffic feature additions, such as turn lanes, are often required to increase traffic volume or address unforeseen conditions not accounted for in the original design. A successful road widening project is a function of many of the key factors and considerations listed below:

- Longitudinal Construction Joints
- Performance of Joint Between Existing Pavement and Widening Lane
- Stabilization of Subgrade and Pavement Layers
- Pavement Edge-drains and Subsurface Drainage
- Pavement Edge Drop-Offs
- Geosynthetic Reinforcement
- Construction Techniques and Equipment
- Embankment Widening

The weakest link will define the lifetime of the structure. If just one consideration is neglected, significant failures may occur. Normally defects are not generally apparent immediately after construction; however, the effectiveness of the widening usually becomes clear after a period of time. Design and construction guidelines are needed to help designers decide when project restrictions require deviation from "best practices".

Few guidelines exist statewide, or even nationwide, for assisting designers in selecting appropriate widening techniques. Current Florida Department of Transportation (FDOT) specifications provide a basic framework for widening hot-mix asphalt (HMA) pavements. However, the existing guidance does not address alternative construction techniques and treatments used in current practice for constructing more durable longitudinal joints in widened roadway sections.

The purpose of this report is to identify factors impacting the performance of flexible road widening with a focus on longitudinal joints between the existing pavement and the new lane widening pavement. This report contains a review of available literature related to lane widening of HMA roadway pavements. Documents reviewed are referenced within the report, and the review is organized by the bulleted factors and considerations shown above.

LITERATURE REVIEW

Flexible Pavement Longitudinal Construction Joints

FDOT (2008)[11]

Guidance provided in the 2008 FDOT Flexible Pavement Design Manual lacks details and descriptions of what engineers must explicitly specify and put into design drawings for road widening. The guidance requires longitudinal joints to be offset 6 to 12 inches and located away from wheel paths. Hot-mix asphalt structural layers are to be brought up to the top of the existing asphalt layers. Then an overlay can be constructed full width over the existing roadway and the widening to minimize the possibility of a longitudinal crack at this joint. In some cases, a leveling course can be placed on the existing roadway prior to the base widening being constructed; though, it may be desirable to place the leveling over both the main roadway and the widening area to remove construction variances.

Zinke et al. (2008) [29]

Connecticut has observed longitudinal cracks opening in flexible pavements that are constructed with traditional butt joints. Zink et al. conducted a study comparing the densities of traditional HMA butt joints and alternative notched wedge joints, shown in Figure 1, constructed over 10 resurfacing projects in Connecticut between 2006 and 2007. Nine of the 10 projects were constructed with butt joints. One project utilized the notched wedge joint exclusively, and two of the projects included both the notched wedge joint and butt joint.

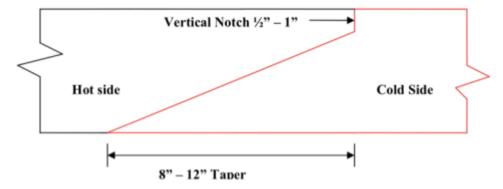


Figure 1. Alternative notched wedge joint.

Traditional butt joints were constructed by aligning the edge of the second paver pass with the edge of the first paver pass and maintaining an overlap of 1.0 to 1.5 inches of hot material from the second pass to ensure an adequate amount of material for compaction. Notched wedge joints were formed by using a paver wing attachment for extruding the edge shape (Figure 2) and a vibrating plate compactor attached to the paver to compact the wedge (Figure 3).

Figure 2. Notched wedge forming device.

Figure 3. Wedge compaction device.

Six-inch cores were taken on the joints and at 6 and 12 inches on either side of the joints at random locations at each site. A total of 155 cores were taken. Density averages calculated at the following locations for each joint type:

- Location A: One-foot from the cold side of the joint
- Location B: Six-inches from the cold side of the joint

- Location C: Centered over the joint
- Location D: Six-inches from the hot side of the joint
- Location E: One-foot form the hot side of the joint

Results are provided in Table 1.

Table 1. Comparison of butt and wedge joint densities.

Butt Joint Measurement Location	A	В	С	D	Е
Sample Size	38	29	26	39	39
Average Density	89.9	87.4	85.6	90.4	91.2
Notched Wedge Joint Measurement Location	A	В	С	D	Е
Sample Size	15	14	11	15	14
Average Density	90.3	89.0	88.8	89.2	90.0

The notched wedge joint provided a higher overall density directly over the joint. Material on the hot side of the joint was denser with both construction methods as expected. The notched wedge joints provided more uniform densities over the inspected areas than the butt joints did. This was particularly evident in the location 6-inches on the cold side as well as directly on the joint location itself.

The authors reported the use of the notched wedge joint did not impede the paving process during the three investigated pilot projects and assumed crews will also become more familiar and efficient with this process as they gain experience with it.

Buncher and Rosenberger (2012)[3]

Hot-mix asphalt longitudinal joint failures are the result of low density, permeability, segregation, and lack of adhesion at joint interfaces. A 2009 Federal Highway Administration (FHWA) survey of their divisional offices found that approximately half of their engineers are unhappy with their state's longitudinal joint performance. There is a wide variation regarding how states address longitudinal joints in their specifications. Two-thirds of states have specifications for longitudinal joint construction. Half of those are prescriptive specifications and the other half are performance specifications requiring longitudinal joint densities ranging from 88 to 92 percent of theoretical maximum density. Buncher and Rosenberger developed a series of best practices for specifying and constructing HMA longitudinal joints based on the following:

- Analysis of an FHWA survey to their state Division Offices on specifications, methods, and performance of longitudinal joints
- Review of existing literature and research
- Identification of areas where there is consensus and areas where there is not
- Interviews with acknowledged paving experts and contractors
- Visits to states that have implemented a longitudinal joint specification

A summary of the longitudinal joint best practices recommendations for design, paving, joint treatments, compaction, testing, and specifications reported are provided below.

Design

- Stagger longitudinal joints horizontally between layers by at least 6-inches. This practice does not apply when placing HMA over jointed portland cement concrete (PCC).
- Do not place longitudinal joints in wheel paths.
- Have well-defined specifications for the placement and quality assurance testing of longitudinal joints
- Use lift thicknesses that are a minimum of four times the nominal maximum aggregate size (NMAS) of coarse gradation mixes and three times the NMAS for fine gradation mixes.
- Consider using less permeable surface mixes by using the smallest NMAS mix that is appropriate, using a finer gradation, and lower design air void level for additional binder.
- Pay for tack as a separate bid item to facilitate having a sufficient amount of material applied.
- Applying surface sealer products at widths of 1 to 2 feet, or "overbanding" with a PG binder at a width of approximately 4 inches will increase the longevity of joints not meeting a minimum density requirement.

Paving

- Control mix segregation.
- Maintain constant paver speed.
- Place straight pilot lanes.
- Use a paver joint matcher mounted a few feet in front of the auger, most optimal when paving surface lift.
- Auger gates and tunnels should be extended to within 12 to 18 inches of the end gate to ensure material is not being pushed and segregated.
- Firmly seat end gate on existing pavement surface.
- Vibrator screed should be turned on all the time.
- Use a 1-inch joint overlap when closing butt or notched wedge joints. Use 0.5-inch overlap if joint is milled or cut back.
- Remove excess overlapped material with a flat-end shovel, and avoid luting or raking overlapped material.
- Do not broadcast excess material across the mat.
- Build up hot-side of the joint so that the surface is approximately 0.1-inch higher after rolling.

Joint Treatments

- Infrared joint heaters can improve joint density by 1 to 2%. These are most beneficial in cold weather paying.
- Hot-applied rubberized asphalt sealant joint adhesives, though costly, are the best material for improved joint performance.
- Double tack joint faces when using an emulsion.
- PG binders provide greater residual binder.

• At minimum, tack the vertical face of the joint with the same material being used to tack the mat.

Compaction

- Use a vibratory roller drum extended approximately 6-inches over the unconfined edge of the mat on the first pass.
- Compact the confined edge of a joint with the first pass of a vibratory roller drum on the hot mat, but staying back from the joint 6 to 8 inches on the first pass. Overlap onto the cold mat 4- to 6-inches on the second pass.
- Use rubber tire roller when intermediate rolling to knead loose material into the joint. Straddle the joint with the back outside tire and align the front outside tire just inside the edge of the joint.
- Do not operate rubber tire rollers near the unsupported mat edge due to excessive lateral movement.

Testing and Specifications

- Contractor's quality control program should include:
 - o Constructing a longitudinal joint as part of the test strip.
 - o Determining an optimum rolling pattern for compaction at the joint.
 - Monitoring joint compaction with a density gauge offset 2-inches from the visible joint. Two or four 1-minute readings should be averaged at each location, with the gauge being rotated 180-degrees between readings. The gauge should be calibrated to mat cores.
- The following pay scale for longitudinal joint density is recommended:
 - \circ ≥ 90% of TMD: earns 100% pay.
 - $\circ \geq 92\%$ of TMD: earns maximum bonus.
 - o Between 92% and 90% TMD: pro-rated bonus.
 - o < 90% of TMD: reduced pavement, and require the joint be sealed by either overbanding (with a PG binder) or a surface seal product.
- Overband or use a surface sealer on joint densities less than 92% TMD.

Kandhal and Mallick (1997) [21]

Thirty pilot HMA test sections were constructed between 1992 and 1995 on roadways in Michigan, Wisconsin, Colorado, and Pennsylvania to evaluate the performance of twelve longitudinal joint construction techniques. Test sections were evaluated after one to four years of being in service. The joint construction techniques evaluated are provided in Table 2.

Table 2. Longitudinal joint techniques evaluated.

Construction/Rolling Technique			Project		
		MI	WI	CO	PA
1.	Rolling from hot side	X	X	\mathbf{X}^{a}	X
2.	Rolling from cold side	X	X	X^{a}	X
3.	Rolling from hot side 152 mm (6 inch) away from joint	X	X	X^{a}	X
4.	(12:1) Tapered joint with 12.5 mm offset without tack coat	X	X^{b}		
5.	(12:1) Tapered joint with 12.5 mm offset with tack coat	X	X^{b}		
6.	Edge restraining device		X		X
7.	Cutting wheel with tack coat	X	X	\mathbf{X}^{a}	X
8.	Cutting wheel without tack coat			\mathbf{X}^{a}	
9.	Joint maker	X	X		X
10	Tapered (3:1) joint with vertical 25 mm offset			X	
11	Rubberized asphalt tack coat			X	X
12	NJ Wedge (3:1) and infrared heating				X

a Unconfined edge had a 3:1 taper

A visual inspection of the joints was performed on the Colorado project after 2 years in service, on the Michigan project after 3 years in service, on the Wisconsin project after 4 years in service, and on the Pennsylvania project after 1 year in service.

Rolling the joint from the hot side gave the best performance followed by rolling from the hot side 6-inches away from the joint. The 0.5-inch (12.5-mm) notch with 12:1 taper, also known as the Michigan joint, had the best potential of obtaining a satisfactory joint. The notch was described as being essential to joint performance. The edge restraining device and cutting wheel were both effective at producing a satisfactory joint; however, these techniques are subject to operator skill. The authors recommend always overlapping the cold joint with 1 to 1.5 inches of material on the second pass and rolling the joint with a vibratory roller as soon as possible to obtain the highest possible density. Highway agencies are recommended to specify joint density to be not less than two percent of density specified in the lanes away from the joint.

Scherocman (2004)[27]

Scherocman identified causes of poor flexible pavement joints and provided general guidelines for construction of durable longitudinal joints between traffic lanes and between the mainline pavement and the adjacent roadway shoulder. He suggests that care must be taken to accomplish the following four primary tasks:

1. Compaction of the unsupported edges of the first lane paved (cold side)

^b Tapered (12:1) joint did not have any vertical offset

HMA densification is typically more difficult to obtain on the cold side of a joint compared to the hot side (second lane paved) of the same joint due to difficulties compacting the unsupported edge of the first lane placed. Adequate compaction of the unsupported edge of the first lane of pavement placed is one of the keys to the construction of a durable longitudinal joint. In most cases, the slope of the outside edge of the mix should be controlled by an edger plate or the end of the paver screed. Scherocman recommends placing the mat with a 60 degree edge taper.

A pneumatic tire roller should not be used within 6 inches of the unsupported edge of the lane to prevent pushing the mix sideways due to the high pressure rubber tires. Scherocman suggests using a steel wheel roller in lieu of a pneumatic tire roller to compact HMA at the joint on the first lane for this reason.

If the edge of the drum of the steel wheel roller is positioned inside the unsupported edge of the pavement lane, the mix has a tendency to widen out, and a crack will typically form at the edge of the drum shown in Figure 4.

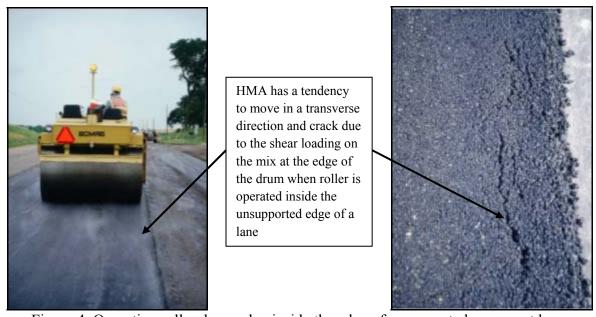


Figure 4. Operating roller drum edge inside the edge of unsupported pavement lane.

Placing the edge of the steel drum directly over the unsupported edge will usually prevent the crack from forming at the edge of the roller drum; however, the mix at the unsupported edge of the drum will still move transversely under the force of the roller. This transverse movement of the mix will hinder densification of the mix at the unsupported edge.

According to Scherocman, the proper location for edge of the steel drum should be extended over the edge of the lane by approximately 6 inches, as shown in Figure 5, to mitigate both transverse movement of the mix and cracking.

Figure 5. Roller drum extended over unsupported edge of pilot lane.

2. Overlap of mix from the hot side of the joint over top of the cold side

The amount of overlap of mix from the hot side onto cold side is critical for two reasons:

- Excess mix placed over the edge of the cold side will have to be removed by raking the joint, or it will be crushed during compaction.
- A depression will occur on the hot side of the longitudinal joint if insufficient mix is placed over the edge of the cold side.

Scherocman recommends the proper amount of overlap should be 1 to 1.5 inches when placing an adjoining lane to a sloped lane formed by the edger plate of a paver screed. When placing a lane along the vertical face of a lane that has been milled, he recommends 0.4 to 0.6 inches of mix overlap.

Figure 6 illustrates both cases of excessive and proper overlap of mix from the hot side over the top of the cold side of the joint.

Proper amount of mix overlap (0.4 to 0.6 in.) from hot side onto the cold side requires no raking of the joint

Excessive mix overlap (< 0.6) from hot side onto the cold side will require raking of the joint

Figure 6. Mix overlap when placing second lane.

3. Raking of mix off the cold side of the joint

Raveling of the longitudinal joint is most often caused by excessive raking of the joint where mix needed at the joint is moved into the interior of the hot side of the joint. This problem usually occurs on the hot side of the longitudinal joint and can be prevented by placing the proper amount of mix overlapping the joint. No raking of the mix at the longitudinal joint is necessary if the proper amount of mix is placed. Improper raking of the longitudinal joint is shown in Figure 7.

Figure 7. Improper raking of the longitudinal joint.

4. Compaction of the joint between the two lanes

Scherocman reported that the practice of compacting longitudinal joints by rolling the joint from the cold side is inefficient for several reasons:

- Majority of the weight of the compaction equipment is on the previously compacted mix.
- The temperature of the newly placed HMA decreases as the roller is focused over the cold mix, reducing the opportunity to obtain the desired level of density in the new mix.
- The amount of compactive effort that can be applied to the mix at the joint is significantly reduced as a vibratory roller cannot be operated in vibratory mode on the cold side of the longitudinal joint.
- Only a minimum amount of the roller weight will be in contact with the mix at the joint if there is a different cross slope between the two lanes, such as when the joint is located at the crown of a roadway.

Compacting the longitudinal joint from the hot side of the joint, by either placing the drum of a steel wheel roller 10 in. over the top of the joint or the outside tire of a pneumatic tire roller directly at the joint is optimal. Figure 8 shows a steel wheel roller compacting longitudinal joints from both the hot side and cold side of the joint.

Compacting the longitudinal joint from the hot side of the joint is most efficient

Compacting from cold side of joint is ineffective and can lead to insufficient density in the mix at the joint

Figure 8. Techniques for compacting HMA longitudinal joints.

NAPA (2002)[19]

The National Asphalt Pavement Association (NAPA) reported on a National Center for Asphalt Technology (NCAT) study conducted in the early 1990s, where various joint techniques were studied, and cores were taken on both sides of the joint to determine where failures were occurring. The study found that an area of low density and high air voids, as annotated as C in

Figure 9, is created on the unconfined edge of the first lane placed. The area is located 6 to 8 inches from the center of the joint. This area of poor compaction allows water to enter, and freezing may break out the asphalt and lead to premature failure.

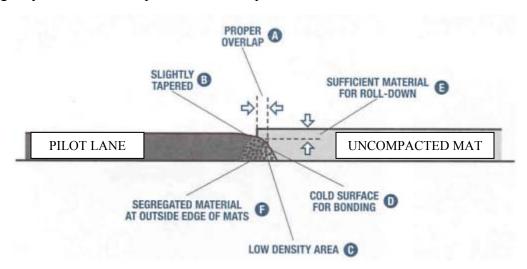


Figure 9. Low density area of longitudinal joint.

NAPA reported that several states have had good success with a tapered joint (similar to that reported by Zinke et al. 2008) to remedy the low density area. The tapered joint is shown in Figure 10.

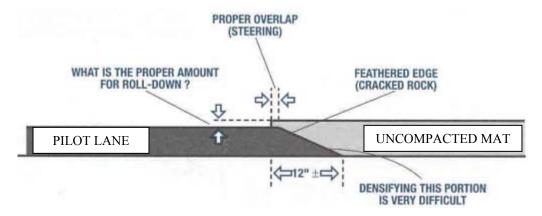


Figure 10. Tapered flexible joint.

Despite its success, NAPA discussed several concerns with the tapered joint technique:

- Densification of the tapered portion of the mat is difficult on the first pass
- Steering the paver is difficult with no definite edge to follow
- Maintaining overlap is difficult with this technique
- Aggregate particles may crack during compaction on the feathered edge areas
- The volume of material required for roll down changes along the taper

• It is inherently difficult to place material with tapers and ultimately compact a horizontal surface

Offei et al. (2013)[9]

The Wyoming Department of Transportation (WYDOT) conducted a comprehensive study of joint performance associated with lane widening; the research was conducted by the University of Wyoming and was a Federal Highway Administration (FHWA) sponsored project. The research looked at several methods for constructing the joint between the existing and new asphalt surface sections, including vertical, tapered, and stepped joints when widening an existing asphalt roadway.

Figure 11 shows the concept of the vertical joint where the cut begins from the top HMA layer and goes to bottom of the base layer. For this joint type, a tapered crushed base (CB) layer is constructed under 2 in. of hot plant mix (HPM) with hot plant mix leveling (HPML) course to match existing plant mix pavement (PMP) prior to a full width HPM overlay.

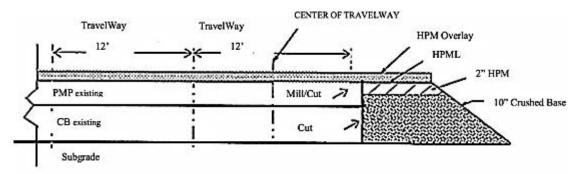


Figure 11. Vertical joint type.

Figure 12 illustrates the tapered joint type where part of the pavement is milled or cut vertically and then the remaining pavement of the asphalt and base materials are cut in a semi-vertical line that is greater than the angle of repose of the base material and greater than the existing surface taper.

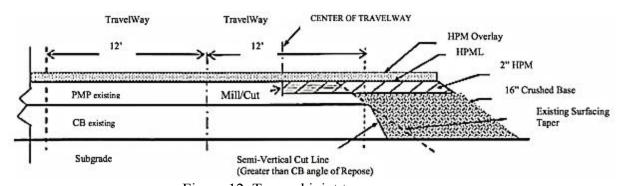


Figure 12. Tapered joint type.

A stepped or notched joint, where the existing HMA layer is vertically cut for its full depth and the base material is also vertically cut full depth is illustrated in Figure 13. Here the vertical cuts

of the HMA and base layers are offset by 1 foot. The stepped joint concept is usually used for existing pavement sections that have cement treated bases (CTB) but is also used for non-treated, crushed bases as well.

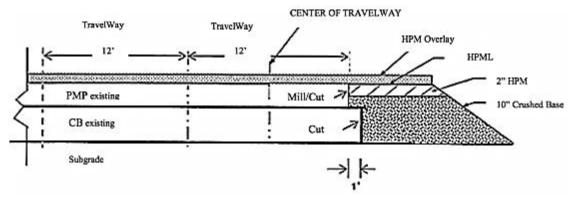


Figure 13. Stepped or notched joint type.

WYDOT currently uses all three methods of joint widening construction. The purpose of the research was to evaluate road widening projects to determine if there is a preferred joint construction method. Both the stepped and tapered joints offer cost savings as more of the existing pavement material is retained when compared to the vertical cut. A fourth method used for shoulder widening is to lay the asphalt directly over the existing base course taper.

Thirty projects were selected for evaluation of joint performance. Construction for most of the projects started in early 2012 and was completed in late 2012. All the newly constructed projects are on state highways. The research consisted of cracks and distress observations, field tests using falling weight deflectometer and dynamic cone penetrometer. The typical crack observed is shown in Figure 14.

Figure 14. Typical longitudinal crack observed.

As part of the project, other state DOTs were contacted, and survey results were obtained from Colorado, Idaho, Montana, North Dakota, South Dakota, Nebraska, and Utah. The survey contained ten questions on type(s) of pavement joint construction technique(s) utilized by their agencies. Table 3 presents the preferences of the responding states for using the joint types shown in **Error! Reference source not found.**

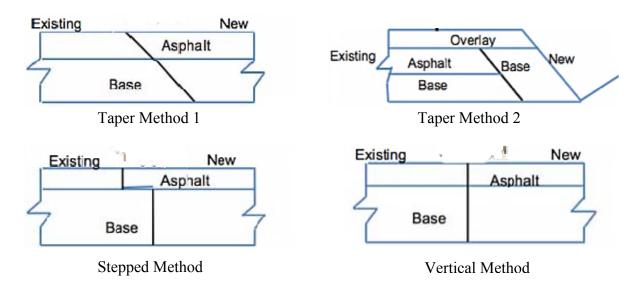


Figure 15. Joint types.

NDDOT Joint Type **CDOT IDOT MDOT SDDOT NEDOT Tapered** X Method 1 **Tapered** X Method 2 Stepped X X Method Vertical X X X X Method

Table 3. Joint types preferred by indicated state DOTs.

Montana State Department of Transportation (MDOT) uses "Tapered Method 2" but with a widening overlay placed flush with the existing pavement surface and another overlay over the entire finished pavement surface. The reason for this variation is that shoulders are designed with 20-year pavement life based on the Equivalent Single Axle Loads (ESALs) within the travel lane. Nebraska State Department of Roads (NEDOR) uses a variation of the "Vertical Method", but widening is carried out using recycling of the mainline (either partial or full depth), and thereafter the entire pavement is covered with overlay.

Tapered Method 1 and Tapered Method 2 are variations of the tapered widening joint (as shown in Figure 12). Tapered Method 1 has the base and asphalt of the widened section laid flush with the corresponding base and asphalt of the existing section. In the Tapered Method 2, widening base material is laid flush with the asphalt of the existing section and both sections covered with an overlay.

Distress for vertical widening joints was observed to be greater than those for tapered widening joints. Results show consistently more longitudinal cracks on vertical joint widening projects compared to tapered joint widening projects for each level of cracking severity.

Most of the deterioration occurred in the travel lane. Analysis of joints located in the travel lane (wheel paths) indicated significant differences between joints in and away from the wheel path. It was determined that joints located in the wheel path have more cracks along the joint lines compared to joints located away from the wheel paths.

Conclusions from the project indicate the tapered joint technique gives relatively better pavement strength compared to the vertical joint type. The vertical joint was determined to have an 18 percent increase in cost compared to the tapered joint due to retaining material in the taper area and the eliminating bituminous pavement cutting of the vertical joint.

Estakhri et al. (2001)[12]

Joint density tests were made on the longitudinal construction joint of several Texas highway pavements. The research indicated low density at the edge of the first paved lane. An example of this is shown in Figure 16, which is the mean density profile on Loop 323 in Tyler, Texas.

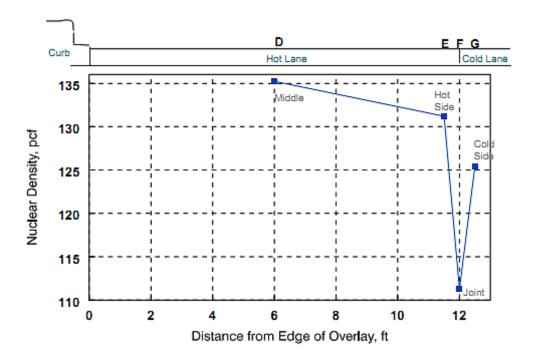


Figure 16. Mean density profile for Loop 323 in Tyler, Texas.

Keefe, T. J. (2014)[16]

Deterioration of the construction joint between existing roadway and widened sections has historically been an issue for pavement engineers and highway agencies and continues to be problematic for FDOT. As an example, this joint performance issue is occurring on a 3.7-mile segment of SR 400 (I-4) in Volusia County, FL where the original four-lane roadway was widened to six lanes in 2008. A typical section detail of the widening is shown in Figure 17. The existing roadway was widened fourteen feet to accommodate a new traffic lane and an additional two feet of inside paved shoulder. This modification shifted striping of the travel lanes so that the longitudinal widening constructing joint is situated beneath the right wheel path area of the middle lanes. A longitudinal crack from this underlying juncture propagated to the surface of the roadway in three to four years after construction concluded. This crack will likely worsen over time with continued traffic loading and moisture infiltration.

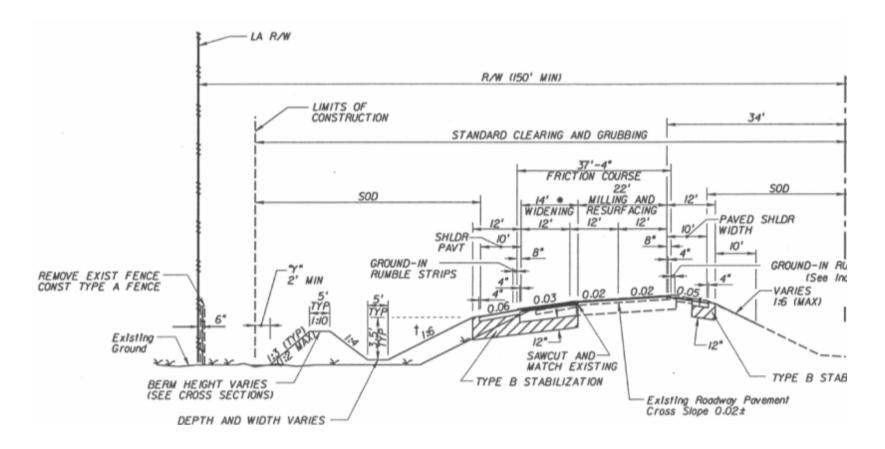


Figure 17. SR 400 typical widening section Volusia County, FL.

Keefe, T. J. (2012)[22]

A segment of SR 400 (I-4) in Seminole County, FL was widened from four lanes to six lanes in 1998. The new lane widening included a transition from inside the median area to outside the median area as shown in Figure 18.

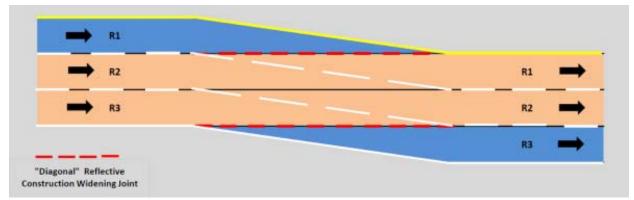


Figure 18. Seminole County SR 400 widening transitions.

A severe reflective joint crack was observed across the full diagonal width of the travel lanes in a 2012 survey, shown in Figure 19.

Figure 19. Diagonal reflective cracking in transition area of SR 400 widening.

FDOT *Pavement Survey and Evaluation Report: State Road 400 (I-4)* recommends the following rehabilitation technique for the inside/outside lane transition to minimize the reoccurrence of the reflective joint crack (Keefe, 2008)[17]:

- 1. Increased milling depth from 3.25 inches to 4.75 inches in the inside and outside lanes.
- 2. After milling, seal the remaining diagonal construction joint (crack) with a hot bituminous joint sealant.
- 3. Place a 1.5 inch structural asphalt lift in milled area.

4. Place a pavement reinforcement product (Tensar GlassGrid TF®) as an interlayer between structural asphalt lifts to strengthen pavement to bridge over the diagonal construction widening joint.

The Florida design team elected to perform a trench repair over the joint, similar to what has been done on the Florida Turnpike in the past, in lieu of using pavement reinforcement products. This project is currently under construction with anticipated completion in April 2015.

Stabilization of Subgrade and Pavement Layers

Little (1995)[23]

Three mix design methods for selecting optimum lime content for pavement subgrade and base stabilization are given in Little's *Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime*. The methods discussed are the Thompson Procedure, Eades and Grim, and the Texas Procedure:

1. Thompson Procedure

Conditions for the Thompson Procedure vary on the objectives of the stabilization and desired field service conditions. Minimum unconfined compressive strength requirements are specified in Table 4.

Table 4. Thompson Procedure minimum strength requirements for lime stabilization.

	No Freeze-Thaw	Freeze-Thaw Activity
	Activity (lb/in ²)	(lb/in^2)
Layer Type	(ASTM D-5102)	(ASTM D-5102)
Base	150	200
Subbase	100	150

Thompson's mix design procedure is presented in Figure 20.

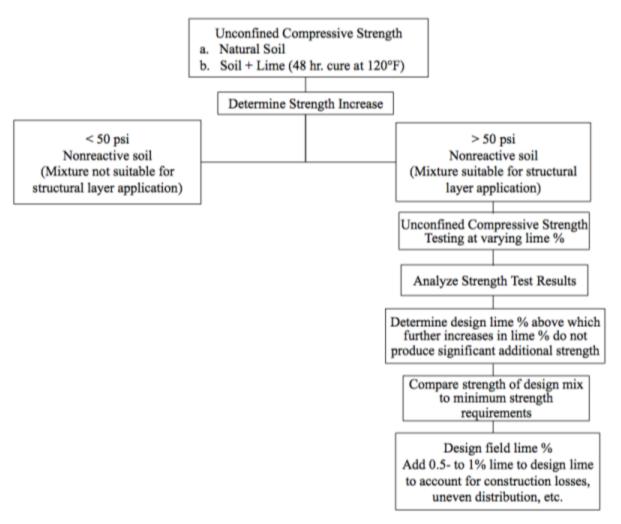


Figure 20. Mix design flow chart for Thompson Procedure.

2 Eades and Grim Procedure

The Eades and Grim Procedure determines the least amount of lime required to produce a pH of 12.4 in a soil-lime mixture. This process is defined in ASTM D 6276 and is based on the idea that the addition of sufficient lime will satisfy the cation exchange capacity and all initial short term reactions, as well as provide a high enough pH to sustain the strength-producing lime-soil pozzolanic reactions.

3. Texas Procedure

The Texas Procedure for determining optimum lime content for stabilization uses a chart based on plasticity index, percent soil binder, and pH to choose target lime content. Unconfined compressive strengths of 150 pounds per square inch (psi) for a stabilized base and 50 psi for a stabilized subgrade are recommended. The Texas Method is provided in *Tex-121-E*.

Hilbrich (2007)[15]

A 2007 multi-district survey within the Texas Department of Transportation (TxDOT) on pavement widening techniques found full depth recycling was the first alternative among many TxDOT districts for widening pavements in poor condition.

From gathered responses, Hilbrich made the following recommendations for full depth recycling projects:

- Limit the existing HMA surface being reworked into the existing base to less than 50 percent
- Cores should be taken from the existing pavement or ground penetrating radar (GPR) survey performed because existing material thicknesses can vary
- A complete laboratory investigation is highly recommended to develop the pavement design

Figure 21 shows a typical section for widening flexible pavements in poor condition using full depth recycling. Table 5 includes the recommended design criteria for TxDOT full depth recycling. Texas Triaxial Class 1 base is required to meet compressive strengths of 45 psi and 175 psi at confining pressures of 0 psi and 15 psi respectively. This specification is based on shear strength parameters of cohesion between 5 psi and 10 psi and a friction angle of 50°. Class L and M bases are required to meet a minimum 7-day unconfined compressive strength of 300 psi and 175 psi, respectively.

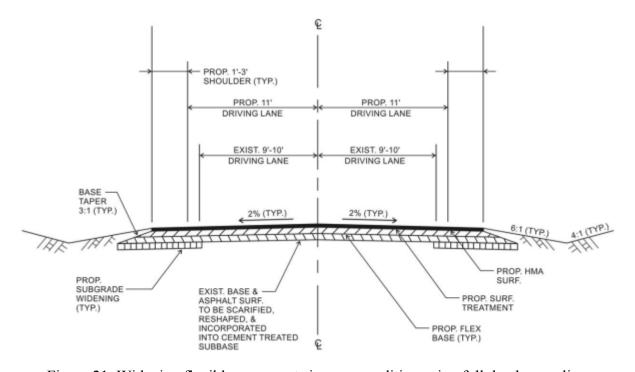


Figure 21. Widening flexible pavements in poor condition using full depth recycling.

Table 5. Recommended design criteria for TxDOT full depth recycling.

rable 5. Recommended design effects for TxDO1 full deput recycling.						
DISTRICT	BASE	UPGRADE BASE	CREATE A SUPER		CREATE A STABLIIZED	
OBJECTIVE	THICKENING	TO CLASS 1	FLEXIBLE BASE	CREATE A STABILIZED BASE (CLASS L)	BASE (CLASS M)	
USED WHEN	Existing base is uniform No widespread structural damage Existing subgrade is good (<15ksi) Low traffic	Low - moderate traffic Good subgrade Moisture not of a concern	 High Volume Roadways Moisture a concern Reasonable subgrade > 10ksi Early opening to traffic 	 Bridging over poor subgrade Strengthening required Low quality variable base/stripped HMA Higher Rainfall Early opening to traffic 	 Bridging over poor subgrade Strengthening required Low quality variable base Higher rainfall Early opening to traffic 	
SELECTION OF STABILIZER ¹	No stabilizer added to the existing material (This is a base thickening project, where new untreated granular material is placed on top of existing)	Full Texas Triaxial Test method 117-E 10 day capillary rise, then • 45 psi at 0 psi confining • 175 psi at 15 psi confining (add low levels of stabilizer)	Full Texas Triaxial Test Method 117-E • 60 psi at 0 psi confining • 225 psi at 15 psi confining • <0.5% gain in moisture over molding moisture after 10 days capillary	Texas Method 121-E 7 day moist cure, then • Unconfined strength > 300 psi • 100% retained unconfined strength after 10 days capillary rise (To reduce time consider 85% retained strength after 4 hour submersion)	Test Method 121-E 7 day moist cure, then For Cement • Unconfined strength > 175 psi • 100% retained unconfined strength after 10 days capillary rise For lime or fly ash • 100 psi after capillary rise (To reduce time, consider 85% retrained strength after 4 hour submersion)	
FPS 19 MODULI ²	70 ksi	100 ksi	125 ksi	200 ksi	150 ksi	
COMMENTS	New base should be of higher or equal quality than existing, and Blending of existing and new base strongly recommended to avoid trapping moisture in upper layer			 Avoid cutting into high PI subgrade if existing structure is thin, and add new base before milling where needed To avoid longitudinal cracking, consider grids and flex base overlay where the PI subgrade soils > 35 Max RAP 50% If lab strength >350 psi, then consider precracking Max cement 4% 	 Avoid cutting into high PI subgrade if existing structure is thin, and add new base before milling where needed To avoid longitudinal cracking, consider grids and flex base overlay where the PI subgrade soils > 35 Max RAP 50% Blend of stabilizers often useful 	

Obtain samples of the existing materials by field auger. If the flexible material is susceptible to breakdown in the lab, then use only the ½ inch fraction in laboratory test program. This is in attempt to partially account for aggregate breakdown during the recycling process
 TxDOT Flexible Pavement Design System (FPS) 19 design moduli for each base class

Pavement Edge-drains and Subsurface Drainage

NCHRP (2002)[20]

A 2002 National Cooperative Highway Research Program (NCHRP) Research Results Digest article presented findings of NCHRP Project 1-34, *Performance of Subsurface Pavement Drainage*, which sought to evaluate the following three objectives:

- 1. The overall effect of sub-surface drainage of surface infiltration water on the performance of AC and PCC pavements.
- 2. The specific effectiveness of permeable base and associated edge-drains, as well as traditional dense-graded bases with and without edge-drains.
- 3. The specific effectiveness of retrofitted surface drainage on existing pavements.

NCHRP Project 1-34 included extensive field performance assessments of flexible pavement sections in 23 U.S. states and Canada. Data were also gathered for more than 300 flexible and rigid pavements from FHWA Rigid Pavement Performance Rehabilitation (RPPR) and Long-Term Pavement Performance (LTPP) databases. The performance of drained and non-drained sections at each project site was compared, and data were analyzed with mechanistic-empirical models for flexible pavement fatigue cracking and rutting. Most flexible pavements in the study carried fewer than 5 million ESALs, with a maximum of 10 million.

The overall findings of this study indicated that subsurface drainage features that are properly designed and constructed may decrease the occurrence of rutting and fatigue cracking in flexible pavements. A life-cycle cost analysis conducted for flexible pavements showed the following results:

- Conventional non-drained AC over unbound dense aggregate base course is the least cost-effective design considered due to fatigue cracking.
- The placement of an edge-drain on this pavement reduced the fatigue cracking and made the design more cost-effective.
- The incorporation of a permeable layer beneath the dense asphalt-bound layer was even more cost-effective.
- Daylighted permeable aggregate base resulted in the most cost-effective design of all, assuming similar performance and reduced cost.

Conversely, clogged edge-drain outlets were found to have a detrimental effect on the performance of flexible pavement sections containing a permeable base. The inability to drain a permeable layer leads to increased fatigue cracking and rutting.

The authors recommend the use of thicker layers of asphalt-bound aggregates and full-width paving to prevent moisture from infiltrating into lane and shoulder cracks. The use of non-stripping aggregates was also found to be important, as was the placement of a granular layer at the bottom of the dense AC layer to avoid a bathtub effect. The performance of a drained

pavement was found to largely be a function of the quality of design, construction, and maintenance.

Baumgardner (2002)[2]

Baumgardner identified maintenance as being most critical to the continued success of any longitudinal edge-drain. Plugged drainage may be worse than no drainage system because the pavement system becomes permanently saturated. The cost to state highway agencies in terms of poor pavement performance may be significant for those who do not properly inspect and maintain edge-drains. Baumgardner suggested drains be inspected at least once a year with video equipment, ditches be kept clean of debris, vegetation be removed from around outlet pipes twice a year, and all ditches be mowed and kept clean of debris.

Baumgardner also recommended painting arrows on the shoulders (Figure 22) to aid locating drain outlets that may be overgrown with vegetation and the use of larger headwalls for outlet pipes (Figure 23).

Figure 22. Painted arrow reference marker.

Figure 23. Large headwall for outlet pipe.

Advantages of larger headwalls for outlet pipes include:

- Easier for maintenance personnel to locate
- Vegetation is located farther away from the outlet pipe
- Erosion potential is reduced
- Potential for cutting or crushing the outlet pipe is reduced

Deschamps, et al. (1999)[8]

Deschamps, et al. noted that consideration must be given to the relative permeability of the original embankment soil and the soil used to widen the embankment for two reasons:

- 1. If the new fill soil has greater permeability than the existing embankment soil, water can infiltrate surficial soils and become perched on existing fill soils, leading to softening and reduction in shear strength.
- 2. If the new fill soil has less permeability than the existing embankment soil, groundwater flowing laterally may become trapped inside the embankment. This scenario could lead

to a reduction in stability due to a reduction in shear resistance and an increase in seepage stresses.

Deschamps recommends an approach for edge drainage shown in Figure 24 to be considered in lieu of detailed analyses when the existing and new embankment soils are of similar classification (Liquid Limit \pm 5, Plasticity Index \pm 5) and lateral groundwater flow through the embankment is expected to be minor:

- 1. Construct benches with adequate grade to induce lateral flow of any infiltration that encounters a less permeable interface, and thereby, minimize perched water at the interface between materials.
- 2. Install a perforated drain along the vertical cut of the first bench located outside the pavement edge. The drain should be covered with an appropriate filter fabric that is compatible with the embankment soil type, and be outfitted with protected outlets at appropriate intervals along the length of the embankment.

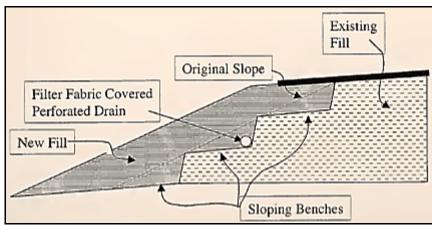


Figure 24. Recommended drain placement along vertical cut outside of pavement edge.

Pavement-Edge Drop-Offs

Graham, J.L., et al. (2011)[14]

Graham, et al. reported that pavement-edge drop-off hazards are often found on two-lane rural highways with adjacent unpaved shoulders and two-lane highways with narrow paved shoulder with widths of one to four feet. The edge drop-offs form along the edge of highways between periods of maintenance, where maintenance crews do not keep material against the pavement edge.

If a vehicle encounters a pavement-edge drop-off and leaves the traveled way, resistance from the road edge on the vehicle's tires may cause the driver to overcorrect his steering angle when re-entering the roadway, resulting in a loss of vehicle control. The authors report that edge drop-off heights can vary from less than one inch to six inches or more, and maintenance standards usually require maintenance when the drop-off exceeds 1.5 to 2.0 inches.

The safety edge is a treatment that slopes the pavement edge at an angle of 30 degrees to reduce the resistance of the tire remounting the roadway. Figure 25 illustrates a detail of the safety edge.

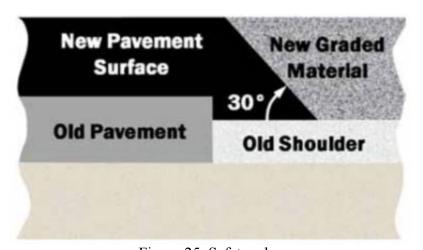


Figure 25. Safety edge.

The effectiveness of the safety edge treatment with respect to reducing crashes and fatalities was investigated in this study. The evaluation included an empirical Bayes (EB) analysis for determining a crash reduction factor for the treatment and a benefit-cost analysis. The safety edge treatment was implemented at 261 sites in Georgia, 148 sites in Indiana, and 6 sites in New York for this study. Analysis was focused on three types of roadway segments:

- 1. Rural multilane roadways with paved shoulders with widths of 4 ft or less
- 2. Rural two-lane roadways with paved shoulders with widths of 4 ft or less
- 3. Rural two-lane roadways with no paved shoulders

The benefit-cost ratio for the edge treatment was determined according to Equation 1. The service life of the safety edge treatment was assumed to be seven years.

$$\mathbf{E}/\mathbf{C} = \frac{(N_{FI}CE_{SE}C_{FI} + N_{PDO}E_{SE}C_{PDO})(P/\mathbf{A},1\%,\mathbf{n})}{CC_{SE}}$$
 Eq. (1)

Where:

B/C = benefit-cost ratio

N_{FI} = number of fatal and injury crashes per mile per year before application of the safety edge treatment

N_{PDO} = number of pavement-edge drop-off (PDO) crashes per mile per year before application of the safety edge treatment

E_{SE} = effectiveness (percent reduction in crashes) for application of the safety edge treatment

 C_{FI} = cost savings per crash for fatal and injury crashes reduced

C_{PDO} = cost savings per crash for PDO crashes reduced

(P/A, i, n) = uniform series present worth factor

i = minimum attractive rate of return (discount rate), expressed as a proportion (i.e., i = 0.04, for a discount rate of 4 percent)

n = service life of safety edge treatment (years)

 CC_{SE} = cost for application of the safety edge treatment (dollars per mile)

Results indicated that the minimum benefit-cost ratios (Figure 26) are at least four times the maximum benefit-cost ratios (Figure 27). The safety edge treatment is likely to be a good safety investment in most situations, especially for roadways with higher traffic volumes where higher crash frequencies are expected.

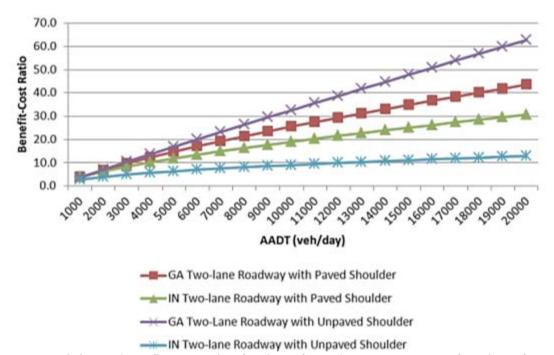


Figure 26. Minimum benefit-cost ratios for the safety edge treatment as a function of AADT.

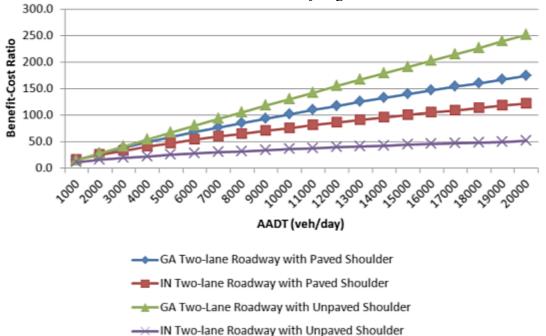


Figure 27. Maximum benefit-cost ratios for the safety edge treatment as a function of AADT.

The EB evaluation for the safety edge treatment with three years of crash data found that 56 of 81 sites showed a positive safety effect for the safety edge treatment; however, only 11 of the comparisons were statistically significant. The safety edge treatment was found to be most effective on rural two-lane highways, reducing total crashes 5.7 percent. The authors suggest that although the positive effectiveness of the treatment on crash reduction is small, the economic analysis supports that it is highly cost-effective.

Lawson and Hossain (2004)[18]

Lawson and Hossain reported best practices for pavement edge maintenance to safely provide a means for vehicles to reenter the roadway without over-steering. They reported that a simple and cost-effective approach to dealing with pavement-edge drop-offs during construction is to install a 45-degree asphalt fillet along the edge of the pavement to tie in the existing shoulder into the resurfaced roadway. A hot or cold asphalt mix is recommended when the wedge height is 6 inches or less. A granular base is recommended when the wedge hight is greater than 6 in. Additional traffic control recommendations for dealing with pavement-edge drop-offs in construction zones is provided in Table 6.

Table 6. Traffic control needs in construction zones for edge drop-off conditions.

Edge	Edge LATERAL POSITION OF EDGE DROP					31110110.
Drop Height (in.)	In Wheel Track	In Lane	On Lane Line	At Edge of Pavement	At Edge of Shoulder	Outside of Shoulder up to 30 ft.
1 to 1- 1/4	Uneven Pavement Sign	Uneven Pavement Sign	Uneven Pavement Sign	Low Shoulder Signs	Do Nothing	Do Nothing
1-3/8 to 2	Disallowed	Disallowed	Channelizing Devices with Steady-Burn Lights	Channelizing Devices with Steady-Burn Lights	Channelizing Devices with Steady-Burn Lights	Do Nothing
2-1/8 to 5-7/8	Disallowed	Disallowed	Channelizing Devices with Steady-Burn Lights	Channelizing Devices with Steady-Burn Lights	Channelizing Devices with Steady-Burn Lights	Channelizing Devices
5 or more	Disallowed	Disallowed	Disallowed	Positive Barrier	Positive Barrier	Channelizing Devices with Steady-Burn Lights

Geosynthetic Reinforcement

Darling (1999)[7]

In a 1998 study, 7.68 miles of flexible roadway on U.S. 190 in Hammond, Lousiana were milled, treated with a geosynthetic reinforcing mesh, overlaid with HMA, and monitored for a period of five years. This study included the addition of inside and outside ten-foot wide lanes at two intersections. The typical cross-sections for lane additions is shown in Figure 28.

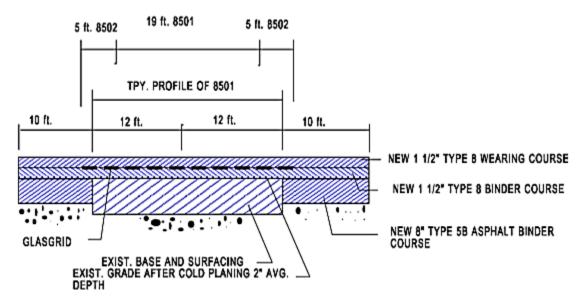


Figure 28. Typical roadway widening profile at intersections.

The site pictured in Figure 29 exhibited extensive block cracking prior to rehabilitation. The crack pattern consisted of four longitudinal cracks in each lane with frequent intersecting transverse cracks dividing the pavement into blocks varying from 1 foot by 1 foot to 10 feet by 10 feet. Darling reported 48 percent of block cracks were of low-severity: *hair line cracks with no spalling or faulting*. He reported 50 percent of block cracks were medium-severity: *cracks with low severity spalling; faulting less than ¼ inch; crack width 1/8 inch or less*. Only 2 percent of block cracks were reported as high-severity: *cracks with moderate or high severity spalling; faulting ¼ inch or more; crack width greater than 1/8 inch*.

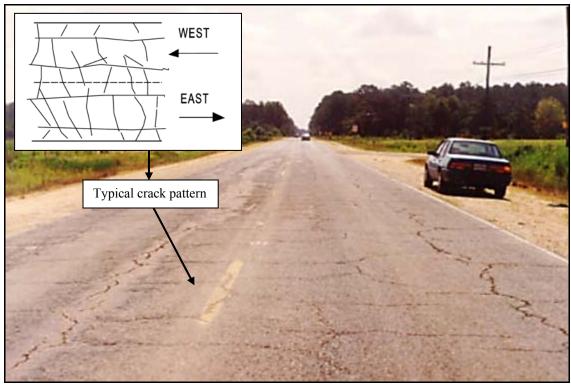


Figure 29. Block cracking present prior to rehabilitation and widening.

GlasGrid7 8501[®] was placed over the full width of the roadway to reduce the overlay thickness requirement as well as reduce thermal and stress related cracks from reflecting through the surface of the new asphalt overlay. GlasGrid7 8502[®], a heavier mesh designed to retard cold construction joints from reflecting to the surface, was placed between the binder course and wearing course of the widened sections. Mechanical properties of the GlasGrid7[®] products used are provided in Table 7.

Table 7. Mechanical properties of geosynthetic reinforcement.

	GlasGrid'	7® Product
	8501	8502
Tensile Strength across Width (kN/m)	100	200
Tensile Strength across Length (kN/m)	100	100
Modulus of Elasticity (MPa)	69,000	69,000

The rehabilitation procedure consisted of:

- 1. Milling 2 in. to 4 in. of existing layer of aspahlt
- 2. Filling the most severe transverse and some longitudinal cracks by:
 - a. Cutting 1 in. to 3 in. wide by 2 in. deep segments
 - b. Cleaning the cut with high pressure compressed air (160-180 psi)
 - c. Applying emulsified tack SS1H @ 60EC to routed cracks and allowing to cool
 - d. Filling routed cracks with HMA binder course

e. Compacting HMA with vibratory steel-wheel roller

3. Place 1.5 inch binder course

The geosythenthic fabric was placed by a tractor at a rate exceeding the speed of paving with no time delays. A fish-scale adhesion pull-up test measured 16 to 24 lbs resistance between grid and binder, which allowed for slow moving traffic over the reinforcement with no observed adverse effects

A small area of damage to the fabric was observed during paving due to truckers locking their brakes and then being moved forward by the paver. The project engineer modified the roll-to-roll overlap placement on the fourth day of paving to maintain 2 in. to 6 in. roll-to-roll overlaps in an orientation away from wheel paths in an effort to prevent HMA trucks from disturbing longitudinal laps. HMA compaction was measured at 92 to 94 percent theoretical maximum density (TMD).

The site was monitored periodically to evaluate the performance of the reinforced mesh treatment. Figure 30 charts the observed percentage reflection of lane widening joints by length for both reinforced and control pavement sections over the five years after treatment.

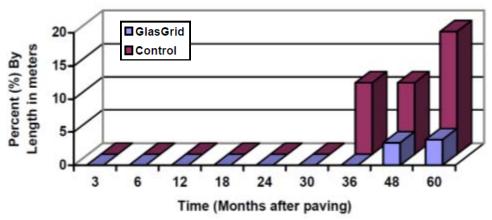


Figure 30. Percent reflection of lane widening joints by length.

Lane widening joint cracking became visible during the 36-month inspection on the control section. This cracking became visible on the reinforced section during the 48-month inspection, where 3.4 percent of the treated joints were reflecting, and 10.8 percent of the untreated controlled joints were reflecting.

At the five year inspection, the untreated lane widening joints showed an increase in reflection to 18.53 percent, almost double the length of cracking that was seen during the four-year inspection. Lane widening joint reflection increased to 3.8 percent at the five-year inspection over the reinforced sections. Cracks in both sections were low severity during the five year inspection. Overall, control sections exhibited about eleven times more cracking than sections treated with geosynthetic reinforcement, supporting that reinforced pavement outperformed the non-reinforcement pavement in terms of retarding cracks and joint reflection.

Buttlar et al. (2000)[3]

A 2000 Illinois DOT (IDOT) study examined performance of fifty-two projects across Illinois, comparing reflective cracking over widened pavement sections treated with a nonwoven polypropylene paving fabric. The fabric was placed either in strips longitudinally over lanewidening joints or over the entire paved area. The base for asphalt overlays at each site was originally constructed of rigid pavements.

Comparisons of measured reflected cracking in treated and control sections showed that the geosynthetic treatments retarded longitudinal reflective cracks from developing but did not significantly retard transverse reflective cracking. Buttlar estimated reinforcement to the widened joint areas increased the rehabilitation life span by 3.6 years, while treatments over the entire pavement increased rehabilitation life span by 1.1 years. Reduction to life-cycle cost was found to be statistically insignificant and was estimated to be a 6.2%. Buttlar concluded that serviceability was generally improved with treatment over rigid bases; however, crack reflection was not retarded relative to untreated areas.

Chowdhury, et al. (2009)[6]

Chowdhury, et al. summarized findings regarding the use of geosynthetic treatments to mitigate reflective cracking in HMA overlays in Washoe County, Nevada. Findings are presented in Table 8.

Table 8. Summary of Nevada experience with reflective cracking mitigation techniques.

Treatment	Description	Performance
NF-1.5	No Fabric + 1.5" HMA Overlay	Retarded reflective cracking for 1 to 3 years after construction.
NF-2.0	No Fabric + 2.0" HMA Overlay	Retarded reflective cracking for 1 to 3 years after construction.
NF-2.5	No Fabric + 2.5" HMA Overlay	Retarded reflective cracking for 1 to 5 years after construction.
F-2.0	Non-woven Geotextile Fabric + 2.0" HMA Overlay	Retarded reflective cracking for 1 to 5 years after construction.
F.2.0s	Non-woven Geotextile Fabric + 2.0" HMA Overlay + slurry seal some years prior treatment application	Retarded reflective cracking for 3 to 5 years after construction with some sections showing reflective cracking within the first year after construction.
P-2.0	Petromat + 2.0" HMA overlay	Retarded reflective cracking for 1 to 5 years after construction. Most of the sections exhibited reflective cracking, either fatigue or longitudinal, and transverse cracking at the end of the 5-year analysis period.
P-2.0s	Petromat + 2.0" HMA overlay + slurry seal some years prior treatment application	Retarded reflective cracking for 1 to 5 years after construction on half of the sections and for at least 5 years on the remaining half of the sections. The sections did not develop fatigue cracking during the 5-years analysis period.

Construction Techniques and Equipment

Lawson (2004)[18]

A common response to a 2004 Texas Department of Transportation (TxDOT) multi-district road-widening survey was that obtaining required density is difficult when constructing narrow pavement additions. This difficulty is often due to insufficient weight of narrow compaction equipment to compact typical lift thicknesses. Maintenance supervisors and pavement contractors reported to Lawson that this can be overcome by decreasing lift thicknesses to four inches. Narrow rollers that Lawson identified as being readily available in Texas for road-widening projects are presented in Figure 31 through Figure 35.

Operating Weight (lb):	5,975
Centrifugal Force (lb):	6,070
Working Width (in):	47
Engine:	Deutz® D2011 L02 I
Rated Power (hp):	31
Speed (mph):	0-6.2
Speed (mpn).	* *

Figure 31. Dynapac® CC122

Operating Weight (lb):	9,680
Centrifugal Force (lb):	15,000
Working Width (in):	50
Engine:	Cat® 3054C Diesel
Rated Power (hp):	83
Speed (mph):	0-5.5

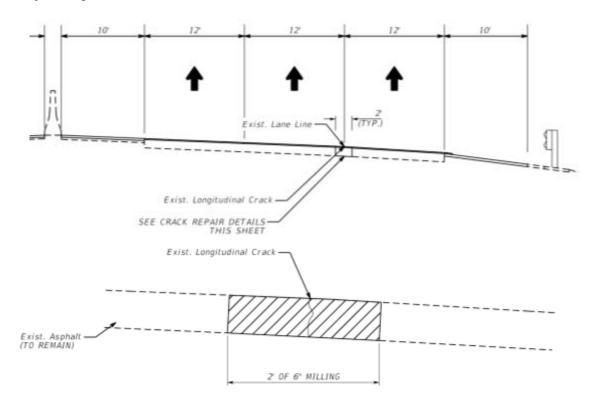
Figure 32. Caterpillar® CP-323C.

Operating Weight (lb):	8,598
Centrifugal Force (lb):	19,109
Working Width (in):	47
Engine:	Duetz® D 2011 L3i
Rated Power (hp):	45
Speed (mph):	0-5.6

Figure 33. Bomag® BW 124 PDH.

Operating Weight (lb):	10,700
Centrifugal Force (lb):	18,120
Working Width (in):	54
Engine:	Deutz® Type F3L 912
Rated Power (hp):	62
Speed (mph):	0-5.6

Figure 34. Hamm[®] Model 2220 D.



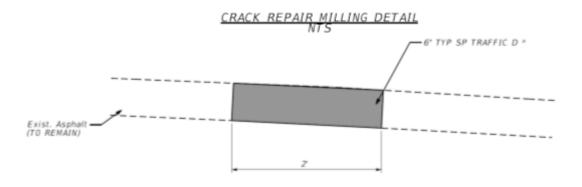

Operating Weight (lb):	11,250
Centrifugal Force (lb):	18,120
Working Width (in):	54
Engine:	Deutz® Type F3L 912
Rated Power (hp):	62
Speed (mph):	0-6.5

Figure 35. Hamm[®] Model 2222 DS.

Florida Turnpike Enterprises (2014)[13]

Two-feet wide trenching and an HMA overlay were specified to repair a longitudinal asphalt crack in a recent FDOT project to improve Florida Turnpike Mainline (SR 91) from Glades Road to south of the Atlantic Avenue interchange in Palm Beach County. Figure 36 illustrates the trench joint repair detail.

CRACK REPAIR RESURFACING DETAIL

Figure 36. Trench joint repair detail.

It was determined the trench design width was too narrow for the contractor's equipment to achieve density. The contractor agreed to increase the trench width from 24 inches to 26 inches at no additional cost to achieve proper compaction with available equipment.

Figure 37. Milling and overlay of longitudinal crack.

The authors recommend increasing trench design widths to a minimum 26 inches to avoid future issues. Florida Turnpike Enterprises (FTE) suggests that placing multiple lifts with smaller equipment was viable; however, the operation may take longer with significant impact to motorists.

Al-Jaf, et al. (2004)[1]

The Namibian Road Authority in Southern Africa claims success with a non-traditional method for widening flexible pavements to remediate deteriorated flexible pavement edges in remote and austere locations. A coarse-graded emulsion based slurry seal has been used as a low-cost alternative to conventional methods for widening roadways exhibiting edge breaks and pavement-edge drop-offs. This technique was sought as treatment to reduce the cost of transporting large quantities of scarce aggregate to austere sites, decrease the length of construction periods, and reduce maintenance costs.

Al-Jaf, et al. reported that pronounced flexible pavement edge breaks contributed to many single-vehicle accidents caused by loss of control and overtaking maneuvers when vehicles traveled off and back onto the roadway. The accident rate observed between 1996 to 2000 was 56 percent higher than the generally accepted rate of 0.99 accidents per million vehicle kilometers on a 109-mile (mi) section of the Namibian Trunk Route 1 roadway between Rehoboth and Mariental. Accident data observed over the five-year period is shown in

Table 9.

T 11 0					•	
Tabla ()	Tanana Ir	Danta L	0001001	atatiatiaa	merce to	treatment.
I ame 9	I I I I I I I K	K MIII P I	accident	CIALICITY'S	131 1731 17	i ireaimeni

Category	Average per Annum	% of Total
Damage only	41	32.2
Slight injuries	12	18.4
Serious Injuries	7	10.9
Fatal	6	8.5
Total	66	100.0

The coarse graded slurry was mixed in a continuous-mix truck and conveyed to a drag box for placing in a single pass. Slurry was placed in an average lift thickness of 1.4-inches and rolled with a pneumatic tired roller three hours after placement prior to opening to traffic.

The placement technique is shown in Figure 38; Figure 39 shows the finished edge widening on Route 1.

Figure 38. Coarse-graded slurry placement.

Figure 39. Finished edge widening overview.

The slurry is a continuous graded aggregate with larger stones to withstand heavy traffic loadings. A blend of 13.2 mm and 9.5 mm single sized stone aggregate and minus 6.7 mm crusher dust was specified. Aggregate grading used in the slurry is provided in Table 3.

Table 10. Aggregate grading.

Sieve Size (mm)	Cumulative % Passing by Mass
13.2	96 – 100
9.5	70 - 80
6.7	40 - 60
4.75	35 - 50
2.36	20 - 40
1.18	10 -15
0.600	5 - 15
0.300	3 - 11
0.150	1 - 8
0.075	0 - 5

According to the authors, this method is only appropriate for roads where suitable shoulder material is present. The most likely failure mode for slurry widening would be rutting.

Cross Slopes

FDOT (2014)[25]

The 2014 FDOT design criteria for resurfacing, restoration, and rehabilitation (RRR) of streets and highways in the *FDOT Plans Preparation Manual: Volume 1* specifies existing pavement and shoulder cross slopes shall be reviewed for compliance and be field verified by one of the following:

- 1. Full Digital Terrain Model for the roadway width evaluate cross slope on tangent sections at 100-foot intervals.
- 2. Vehicle Mounted Scanner prior to design, using the results of the scan, determine roadway limits where cross slope is potentially out of tolerance and request Digital Terain Model of the roadway width for these limits. Evaluate cross slope on tangent sections at 100-foot intervals.

Criteria for roadway and freeway cross slopes are provided in Table 11; standard freeway cross-slopes are illustrated in Figure 40.

Table 11. Allowable roadway cross slopes.

Facility or Feature	Standard	Allowable Range
Two-Lane Roads	0.02	0.015 - 0.030
Multilane Roads	0.02	0.015 - 0.040
Shoulders	0.06	Adjacent Lane Cross Slope - 0.080
Parking Lanes	0.05	0.015 - 0.050

Figure 40. Standard FDOT freeway cross slopes.

An allowable range of 0.015 to 0.025 is acceptable for the 0.02 freeway cross slopes shown in Figure 40, and a range of 0.025 to 0.035 is specified as acceptable for the 0.03 freeway cross slopes.

On resurfacing, restoration, and rehabilitation (RRR) projects where existing ditches can be modified for storm water management purposes, the use of steeper than standard sideslopes and additional depth may be cost-effective; however, values selected shall generally be the flattest that are practical. Guidelines are provided for both front slopes and back slopes.

Guidelines for Front Slopes:

- 1:6 is desirable
- 1:4 may be constructed within the clear zone
- 1:3 may be constructed outside the clear zone
- Existing front slopes 1:3 or flatter may remain within the clear zone. Shielding may be required

- Steeper than 1:3 shall be shielded as per Design Standards, Index 400, General Notes
- Consideration should be given to flattening slopes of 1:3 or steeper at locations where run-off-the-road type crashes are likely to occur (e.g., on the outsides of horizontal curves)
- The proposed construction should not result in slopes steeper than the existing slopes in violation of previously specified values

Guidelines for Back Slopes:

- 1:4 is desirable
- 1:4 may be constructed in the clear zone
- 1:2 may be constructed outside the clear zone without shielding
- Existing back slopes 1:2 and flatter may remain
- Existing back slopes steeper than 1:3 within the clear zone may require shielding

Soil slopes and foundations over soft soils may be reinforced by geosynthetic products approved in *FDOT Design Standards Index 501*. Design procedures are provided in Section 31.4.3 of the *FDOT Plans Preparation Manual, Volume I.*

Embankment Widening

Deschamps, et al. (1999)[8]

In the 1990s, several failures occurred in Indiana highway embankments that were widened and steepened. Deschamps surveyed state and federal transportation agencies to gather both technical problems for design engineers and practical implementation problems during construction of steepening sideslopes of existing embankments (Table 12).

).

Table 12	Embankment	widening	technical	nrohlems
1 4010 12.	Linounkincin	widening	tecimiear	problems.

Construction Personnel **Design Engineers** Steepening sideslopes reduces the The work area available at the toe margin of safety with respect to slope and crest of the highway may be stability of an embankment limited by site constraints Designer must consider both Placing additional earthfill on an stability of embankment and stability existing embankment can be of the wedge fill placed to widen complicated by slope embankment Preferential failure planes can Traditional equipment may not be develop at interface between original suitable for fill placement and embankment and fill placed to compaction steepen slope Traditional stability analyses may Plans and specifications may not not be capable of evaluating stability sufficiently convey the design of wedge fill placed on a sideslope engineer's intentions

Deschamps conducted an investigation of five Indiana DOT (INDOT) projects where widening and steepening of existing embankments was performed. Three of the five projects were considered failures, and two of the projects were considered successful and exhibited no distress. Deschamps reported that a number of factors influenced the ultimate stability of the failed embankment slopes with failure to comply with INDOT specifications being the overarching problem. Deschamps made the following recommendations for future embankment widening projects:

- 1. Remove existing vegetation and organic top soil to obtain an adequate construction joint between old and new fill and to eliminate the potential for weak seams to develop because of decomposition.
- 2. Construct benches in existing slopes to provide a good construction joint between old and new fill and to provide a horizontal surface upon which adequate compaction of the lifts can be achieved. A 10 foot bench should be proved on all slopes steeper than 4V:1H.
- 3. Embankments built with higher plasticity soils should be constructed at flatter slopes to provide adequate margins of safety. Recommended slope inclinations for given plasticity indices are provided in Figure 41.

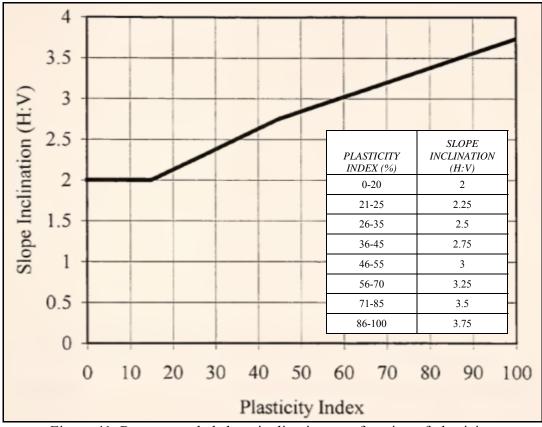


Figure 41. Recommended slope inclination as a function of plasticity.

- 4. Compact fills to a minimum dry density equal to or greater than 95 percent of the maximum dry density achieved in the standard Proctor tests with the water content of the fill being -2 percent to +1 percent of the optimum moisture obtained in the Proctor test.
- 5. When the width of the embankment widening is less than the width of conventional compaction equipment, it may be necessary to compact lifts wide enough to accommodate the equipment.
- 6. Consideration needs to be given to the permeability of the existing embankment material and the material to be used in the widening. If the permeability of the new material is greater than the existing, then water can infiltrate, which could lead to a reduction in shear strength of the material. Also, if the permeability is less than that of the existing material, then water may become trapped within the embankment.

QUESTIONNAIRE RESPONSES

This section summarizes 20 responses provided by highway agencies, research centers, and industry that participated in a flexible lane widening survey conducted in October 2014. The survey was designed to assess national perspective on current longitudinal joint construction practices, specifications, and joint performance. Complete responses are provided in Appendix A.

All but one agency rated its overall experience with flexible pavement lane widening, particularly the performance of the juncture between new and existing pavement, as fair or good. No group reported a poor experience. New Jersey reported an overall excellent experience with joint performance. Results are provided in Table 13.

Table 13. Overall agency experience with lane widening.

Agency	Excellent	Good	Fair	Poor
Alabama DOT		•		
Arkansas DOT			•	
Colorado DOT		•		
Kentucky DOT		•		
Maryland DOT		•		
Mississippi DOT		•		
Montana DOT		•		
New Jersey DOT	•			
New Jersey Turnpike Authority		•		
New York DOT			•	
North Carolina DOT			•	
Tennessee DOT		•		
Texas DOT Austin District		•		
Texas DOT San Antonio District		•		
Texas DOT Maintenance Division		•		
Virginia DOT		•		
Federal Highway Administration				
National Center for Asphalt				
Technology			•	
University of Texas CTR			•	
Lane Construction Corporation			•	

Selection of widening projects on flexible pavement

Traffic level and safety were cited as the most common factors reported influencing decisions to widen a lane. Results are provided in Table 14.

Table 14. Overall agency experience with lane widening.

Agency	Traffic Level	Safety	Access
Alabama DOT	•	•	
Arkansas DOT	•	•	
Colorado DOT	•	•	•
Kentucky DOT	•	•	•
Maryland DOT	•	•	•
Mississippi DOT	•	•	•
Montana DOT	•	•	
New Jersey DOT	•	•	•
New Jersey Turnpike Authority	•	•	•
New York DOT	•	•	
North Carolina DOT	•	•	•
Tennessee DOT	•	•	•
Texas DOT Austin District	•	•	•
Texas DOT San Antonio District	•	•	
Texas DOT Maintenance Division	•	•	
Virginia DOT	•	•	
Federal Highway Administration	•	•	
National Center for Asphalt Technology	•	•	
University of Texas CTR	•	•	•
Lane Construction Corporation			

General experience with lane widening projects

Colorado, Mississippi, Tennessee reported no history of major problems with widened section joint performance outside of normal long-term issues with longitudinal joint performance of surface mixtures on all projects. The most common distresses observed by the remainder of agencies at the joint between existing lanes and new widened lanes are longitudinal cracking, reflective cracking, and differential settlement between sections. Table 15 presents the most common issues mentioned.

Problem at Widening Joint	Number of Agencies			
Longitudinal crack formation	8			
Reflective Cracking	7			
Differential settlement	7			
Poor compaction	3			
Trapped moisture	3			
Raveling at joint	2			

Table 15. Problems reported at widening joint.

A general consensus on many aspects of best practices to mitigate longitudinal joint problems was found between agencies. Practices reported that have been successful to overcome early joint deterioration with widening projects are summarized in the following sections.

Widening structure should match existing cross section

Most agencies recommended matching widened cross sections to existing cross section and addressing internal drainage if the existing section is structurally adequate. Texas noted close inspection of the existing pavement prior to designing the widening section is critical. In some cases, an existing pavement will have already been widened in the past, but this is not necessarily evident from looking at the surface condition. Widening might have been performed by maintenance crews and be undocumented. Ignoring this condition may lead to variability in lateral stiffness of the pavement structure and joint lines shifted into wheel paths. However, only five agencies routinely use a falling weight deflectometer (FWD) to verify structural adequacy of candidate widening sections. Texas and Maryland have had success using both ground penetrating radar (GPR) and pavement core samples to identify layers in existing pavements. From the contractor perspective, Lane Construction Corporation reported that states are often minimizing pre-construction surveys to verify existing conditions, and pavements often vary from design. These incidences can lead to the contractor performing the work at existing contract unit prices even though most all occurrences are significant changes in scope and materially different than the original design.

Texas has used full depth HMA for the full width of the widening to limit consolidation in the new section. In some cases, this either caused drainage problems where the widened HMA section would dam up water, or the section would act monolithically and exhibit poor load transfer, as the widened HMA section was much stiffer than the existing pavement section. Texas also reported that some contractors prefer to use asphalt stabilized base for the widened section because it is faster to place and provides a riding surface at the end of the day without need for applying any further surfacing. Placing an asphalt stabilized base adjacent to a pavement constructed with un-stabilized granular base can easily lead to trapped moisture at the joint interface and rutting or transfer cracking once wheel loads are applied at the joint. In these cases, Texas will place a 4-inch layer of crushed granular base in the widening trench, and asphalt stabilized base is then placed over the granular base to eliminate the trapped moisture problem.

New York has a mature system with many pavements that are thick from several cycles of overlays and well drained in most cases. They report matching new sections to existing sections generally gives good functional results.

Do not place joint in a wheel path

There was a strong consensus between all groups to avoid placing joints in wheel paths, citing this practice always leads to a higher rate of joint deterioration. Two agencies reported this condition is exacerbated on routes where the joint is placed under heavy traffic and heavy repetitive wheel loads. If possible, the joint line should be shifted further into the existing pavement to reduce or eliminate this condition. Sometimes this will mean placing the joint in the center of a lane. New York occasionally places all of the widening on one side of a highway to avoid having a widening joint in a wheel path. Leaving the joint in the wheel path to maximize use of the existing roadway pavement is false economy.

One additional requirement the New Jersey Transit Authority (NJTA) has with regard to the planned location of longitudinal joints in the surface course is that they be offset 1-foot from the proposed location of traffic stripes. This is to allow for future crack sealing of longitudinal joints without compromising traffic stripes.

Stagger joints between pavement layers

Twelve of thirteen agencies practice staggering joints between pavement layers. There was some variation in approaches used to tie into existing sections; however, most groups reported offsetting joints 6-inches between successive layers. A minimum offset of 6-inches is defined as a best practice by NCAT and FHWA. Montana and Kentucky use a longitudinal edge key to notch into the existing section, such as detailed in Figure 42. Montana reported a lower occurrence of joint reflection and differential settlement at the joint when placing a gravel base in 8-inch lifts, notching into the existing road section, and placing at least one lift of new asphalt pavement beyond the widened section onto the existing surface to bridge the joint.

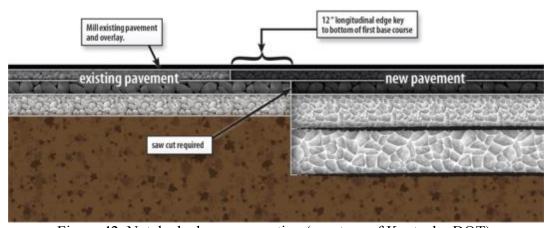


Figure 42. Notched edge cross section (courtesy of Kentucky DOT).

North Carolina has lessened problems with reflective cracking by milling pavement adjacent to a widened section to a depth of 1.5-inches, then surfacing both the widening and existing pavement. Lane Construction Corporation typically tries to implement an offset joint detail on

their design-build contracts and prefers to use a 1-foot offset into the top lift of adjacent flexible pavement section. They reported that some districts in Florida are including offset joints in widened section designs and hope to see this practice being used uniformly across all Florida districts.

Position joint a sufficient distance into existing pavement

The location of the joint between an existing and new pavement structure may vary due to condition of edge of the pavement. Kentucky, Montana, Virginia, and Lane Construction Corporation prefer to place widening joints 12-inches inside the existing pavement. Colorado tries to place the joint within 2-feet of the lane line.

Texas commonly places the joint within 4 ft of the edge on narrow widening and 12 to 14 ft from the edge on extra lanes to avoid wheel paths. Texas noted difficulties when saw cutting at the extreme edge of the pavement to maximize use of the existing pavement structure. This practice can lead to joint failures when new base is compacted against the older, deteriorated and nonuniform materials that are likely found at the edge of the roadway. The existing pavement edge typically has the worst quality material and is composed of maintenance repairs, base material that is deteriorated or has vegetation growing through the pavement within about 6-inches of the edge. Placing the joint farther into a more stable and workable face will also allow more space to fit compaction equipment (Figure 43).

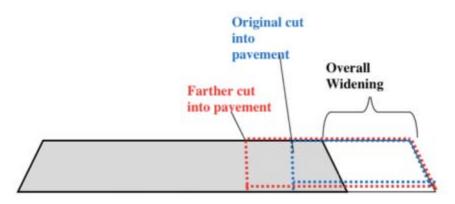


Figure 43. Position joint farther into existing pavement for an interface with more sound material and space for compaction [5].

Bridge longitudinal widening joint with an overlay

Placing an overlay over the entire roadway in conjunction with joint staggering is a best practice recommended by FHWA and NCAT to help mitigate stacking of underlying joints. Six agencies reported placing HMA across the entire width of travel lanes to avoid a longitudinal widening joint on the surface of the pavement.

University of Texas reported that narrow widening projects are often funded using Safety Bond or Highway Safety Improvement Program funds which do not allow for structural strengthening of the pavement during a widening project. These funds (CAT 3) are to provide for widening of the pavement for safety purposes at the maximum benefit versus cost. This precludes use of a structural asphalt layer and typically involves placement of a surface treatment. On projects funded with CAT 1 funds, again these projects are often lower volume routes that might carry

heavy trucks, but placing a structural ACP layer across the entire pavement surface would in most cases be considered cost prohibitive.

<u>Treatments typically used for widened-section longitudinal joint performance</u>
Only 4 of the 20 agencies reported the use of joint adhesives, though it was strongly recommended in current literature. Applying a tack coat to the open face of joints was the most frequently reported treatment. Treatments reported are provided in Table 16.

Table 16. Treatments used to improve joint performance

Treatment	Number of Agencies
Tack coat joint face	7
Joint adhesive/sealer	4
Grid reinforcement	1
Full depth HMA in widened section	1

Geotextile fabric reinforcement has been used in Texas, Mississippi, research projects in Arkansas, and on concrete joint repairs before asphalt overlays in Kentucky. Texas has had success embedding Glassgrid 2-ft on either side of a HMA joint as an effective, however costly practice. Geotextile reinforcements are also often used in Texas when rehabilitating pavement over expansive soils to resist tensile stresses associated with soil movement. New York has had issues with fabrics not being strong enough to resist forces involved at widening joints in its pavements. New Jersey is currently proposing the use of special mixtures, such as Matrix Asphalt over Binder Rich Intermediate Course to inhibit reflective cracking in composite pavement widening projects. No special treatments are typically used in New Jersey for widening flexible pavement structures.

Keep joint sealed

Four agencies reported performance benefits of monitoring and sealing joints as needed in widening sections. Colorado routinely uses a crack sealant to fill longitudinal cracks that appear on widened pavement sections during its normal maintenance routine.

Provide neat vertical faces

Neat vertical faces free of dirt and debris will provide a surface for uniform tack coat adhesion and the best condition for achieving proper compaction along joints. Agencies reported both the use of milling machines and saws to create vertical cuts.

Texas favors using a milling machine to provide vertical face to compact newly placed base material against. Uneven cut lines and joint faces have been experienced on projects that use a grader blade to widen the pavement and poor compaction has been identified in these "sluffed" areas. In a few cases on rough Farm to Market roads, Texas has used a paver to place a thin hot mix layer to level up rough edges.

Widening design

Engineers within areas, regions, or districts usually perform widened pavement section designs internally. Five states reported that a pavement design group generates designs for widening sections. Three states reported occasional use of consultants. Just over half of agencies reported using some form of the AASHTO Design Guide for the design of widened pavement sections. Matching the existing pavement is typically the key driver for design. Eight of the agencies have a minimum requirement to match widened pavement sections to existing pavement sections. Methods used to generate widened section pavement designs are presented in Table 17. Sample flexible pavement widening cross sections routinely used in New Jersey, Maryland and Texas are provided in Appendix B.

Table 17. Design methods used for widened pavement sections.

Agency	AASHTO Design Guide	MEPDG	Other Internal Design Procedure	Design Details
Alabama DOT			•	Typically match existing roadway layers.
Arkansas DOT	•			Arkansas uses AASHTO Design Guide but in process of moving to MEPDG; running both designs now, but uses AASHTO Design Guide for final decision.
Colorado DOT		•		Prior to July 1, 2014, Colorado used the AASHTO Design Guide.

Table 17. Design methods used for widened pavement sections.

Agency	AASHTO Design Guide	MEPDG	Other Internal Design Procedure	Design Details
Kentucky DOT			•	Kentucky uses the KY ME Design Method which includes KY soaked CBR and KY ESALs to evaluate with internal M-E design curves; will migrate to new curves based MEPDG Analysis and Calibration/Verification in near future.
Maryland DOT			•	Maryland's internal design procedure uses AASHTO 1993, MEPDG and RSL, since individually all have their limitations.
Mississippi DOT	•			
Montana DOT	•			Montana uses AASHTO Design guide for surface design, but that does not address subgrade issue. Though it is not a requirement, Montana typically matches the surfacing.
New Jersey DOT	•			
New York DOT			•	New York has a series of design charts based loosely on the 1986 AASHTO design method, heavily modified to reflect New York experience and performance.
North Carolina DOT	•			

Table 17. Design methods used for widened pavement sections.

Agency	AASHTO Design Guide	MEPDG	Other Internal Design Procedure	Design Details
Tennessee DOT	•			Tennessee uses AASHTO Design Guide '93.
Texas DOT Austin District			•	Texas uses FPS21, state specific software.
Texas DOT San Antonio District			•	Texas uses FPS21, state specific software.
Texas DOT Maintenance Division				Texas uses FPS21, state specific software.
Virginia DOT	•			

The most common field tests performed to gather data for generating a design are FWD, cores, soil borings, and GPR. Eleven agencies regularly conduct a structural evaluation for lane widening projects. The number of agencies using each data collection method is presented in Table 18.

Table 18. Most common data collected in routine structural evaluations

Test	Number of Agencies
Falling Weight Deflectometer	5
Pavement Cores	3
Soil borings	3
Ground Penetrating Radar	2
Visual Survey	2
Dynamic Cone Penetrometer	1

Six agencies reported having the following design guidance on lane widening and design of the longitudinal joint:

• Arkansas In curb and gutter sections where the widening is 4-feet or less, concrete base is used in the widening instead of aggregate or asphalt, then overlaid with a 2- to 4-inch lift of asphalt surface course. Arkansas also shifts the alignment and does all of the widening on one side of the roadway if the

width of the widening is small.

Maryland

Widened sections should be at least as thick as the existing pavement. Concrete base is used in widened sections where the lane width is less than 4-feet wide. Applying tack coat to the face of vertical saw cuts is required.

Montana

Subgrade material and gravel base is to be placed in 8-inch lifts and notched into the existing road section. In addition, if the native material is inadequate, the widened embankment may be constructed of higher quality material. At least one lift of new asphalt pavement extends beyond the widened section onto the existing surface to bridge over the joint.

• Virginia

Pavement design for an asphalt widening meets or exceeds the depths and types of layers in the existing pavement. Subsurface drainage of the existing and proposed pavement is to be addressed in the pavement design. The adjacent travel lane is milled to a minimum depth of 1.5 inches and replaced with an asphalt surface course to match the existing pavement.

New Jersey

HMA surface courses are constructed for the full width of travel lanes.

• Texas

Narrow widening projects often include a general note indicating that the joint line is 'saw cut'. However, in practice, based on interviews, this can mean use of a milling machine, use of a motor grader with a coulter blade (an agricultural implement) or a grader with a widening attachment. Other general notes relate to requirements limiting widening to 1 mile or less based on a demonstration by the contractor that the amount of widening trench opened can be filled and compacted to provide a widening surface within the same business day. Some plan sets also include a detail drawing of the widening joint; however, this varies.

Quality Control Testing

No special quality control procedures outside of standard construction specifications for widening sections were reported for lane widening projects. Agencies reported practicing the standard state inspection quality control procedures for constructing subgrade, base, and structural asphalt materials; ensuring quality materials are placed at correct elevations, adequate density is achieved, drainage layers are aligned, and layer thicknesses are correct. Efforts are made to ensure subgrade resilient moduli of the widened section are similar to the existing section. One agency regularly conducts proof rolling inspection of subgrade to identify and correct soft spots on widening projects. NCAT recommends monitoring material segregation,

which may be an issue in widened sections. New Jersey is in the process of developing a specification with required quality control testing for all longitudinal cold joints.

Subgrade and Base Stabilization

Seven of 20 agencies reported having no routine method for subgrade and base stabilization. The limited area of many widening projects creates difficulties bringing in equipment to apply and stabilize mixes. Chemical stabilization is commonly reserved for projects in Arkansas and Kentucky where the widened section exceeds the width of a single lane. Kentucky normally places one foot of aggregate and fabric or geogrid base reinforcement for single lane additions and uses cement or lime stabilization for interstate widening projects. The use of lime stabilization, cement stabilization, and geosynthetics were most commonly reported. The number of agencies reporting routine use of each method is presented in Table 18.

Table 19. Most common data collected in routine structural evaluations.

Method	Number of Agencies
No standard practice	7
Geosynthetics	3
Lime stabilization	3
Cement stabilization	3
Full depth reclamation	2
Do not use stabilization	2
Subsurface grout injection	1

Secondary consolidation of widened sections on rural roadways has led Texas to rehabilitate many roadways where the original pavement may be denser than a constructed widening. Texas reclaims, widens, and cement stabilizes the existing pavement material and uses it as a strong subbase followed by a flexible base with a two-course surface treatment or hot-mix asphalt depending on the traffic needs. This practice is often used on projects where each side of the roadway is widened by 2 to 8 feet. Using this method, the joints are eliminated at the pavement edge, the contractor can use full-size construction equipment to construct the project which allows better compaction operations.

REFERENCES

- 1. Al-Jaf, A., T. Distin, and J. Essmann, *Cost Effective Method for Widening of Bituminous Surfacings Using a Coarse Graded Slurry*, Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa, Sun City, South Africa, 2004.
- 2. Baumgardner, Robert. Maintenance of High Edge Drains, http://www.fhwa.dot.gov/pavement/concrete/edge.cfm, February 2002.
- 3. Buncher, M. and C. Rosenberger, *Best Practices for Constructing and Specifying HMA Longitudinal Joints*, Federal Highway Administration, Washington, D.C., July 2012.
- 4. Buttlar, W.G., D. Bozkurt, and B.J. Dempsey. Cost-Effectiveness of Paving Fabric Used to Control Reflective Cracking, Transportation Research Record 1730, Transportation Research Board, National Academy of Sciences, 2000.
- 5. Burton, M. et al., *Flexible Pavement Narrow Widening Best Practices and Lessons Learned*, FHWA/TX-14/0-6748-2, Univsersity of Texas Center for Transportation Research, Austin, TX, September 2014.
- 6. Chowdhury, A., J.W. Button, and R.L. Lytton, Tests of HMA Overlays using Geosynthetics to Reduce Reflection Cracking, Report 0-1777-3, Texas Transportation Institute, College Station, TX, February 2009.
- 7. Darling, J. Performance Evaluation of Glasgrid® Pavement Reinforcement for Asphaltic Concrete Overlays, Saint-Gobain Technical Fabrics, Ontario, Canada, 1999.
- 8. Deschamps, R., C. Hynes, and P. Bourdeau. Embankment Widening Design Guidelines and Construction Procedures, FHWA/IN/JTRP-99/4, Joint Transportation Research Program, West Lafayette, IN, 1999.
- 9. Offei, E., R. Young, K. Ksaibati and D. Apronti, Evaluating Base Widening Methods, Report Number FHWA-WY-14/02F, Department of Civil & Architectural Engineering, University of Wyoming, December 2013.
- Edwards, L., Tingle, J. S., and Q. Mason, Laboratory and Field Evaluation of Dust Abatement Products for Expedient Helipads, ERDC/GSL TR-10-38, US Army Engineer Research and Development Center, September 2010.
- 11. Flexible Pavement Design Manual, Florida Department of Transportation, Tallahassee, FL. 2008.
- 12. Estakhri, C., Freeman, T.J. and C. Spiegelman, Density Evaluation of the Longitudinal Construction Joint of Hot-Mix Asphalt Pavements. s.l.: Report 1757. Texas Transportation Institute, College Station, TX, 2001.

- 13. Extinguish the Torch Summary Report: Resurface Mainline TPK from Glades Road to South of Atlantic, FIN: 431079-3/5-52-01, Florida's Turnpike Enterprise (FTE), June 2014.
- 14. Graham, J. L., K R. Richard, M.K. O'Laughlin, and D.W. Hardwood, Safety Evaluation of the Safety Edge Treatment, FHWA-HRT-11-024, Federal Highway Administration, McLean, VA, March, 2011.
- 15. Hilbrich, S. and T. Scullion. Guidelines for Design of Flexible Pavement Widening, 0-5429-P2, Texas Transportation Institute, College Station, TX, 2007.
- 16. Keefe, T. J. (personal correspondence, June 12, 2014).
- 17. Keefe, T. J. Pavement Evaluation Report: State Road 400 (I-4), Florida Department of Transportation, Tallahassee, FL, October, 2008.
- 18. Lawson, W. and S. Hossain. Best Practices for Pavement Edge Maintenance, Report FHWA/TX-04/0-4396-1, Texas Tech University, Lubbock, TX, May 2004.
- 19. National Asphalt Pavement Association (NAPA), Longitudinal Joints: Problems and Solutions, Quality Improvement Series 121, Lanham, MD, September 2002.
- 20. NCHRP, Performance of Pavement Subsurface Drainage, Research Results Digest, No. 268, Transportation Research Board, Washington, D.C., November 2002.
- 21. Kandhal, P. S. and R. B. Mallick. *Longitudinal Joint Construction Techniques for Asphalt Pavements*, NCAT Report No. 97-4, National Center for Asphalt Technology, Auburn, AL, August 1997.
- 22. Keefe, Timothy J., Pavement Survey and Evaluation Report: State Road 400 (I-4) from West of EE Williamson Overpass to West of Lake Mary Boulevard, FPN 429080-1, Florida Department of Transportation, October 2012.
- 23. Little, D.N., Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime, Kendall Hunt Publishing Company, Iowa, 1995.
- 24. New Jersey Turnpike Authority Design Manual, New Jersey Turnpike Authority, Woodbridge, NJ, May 2007.
- 25. Plans Preparation Manual: Volume I, Topic #625-000-007, Florida Department of Transportation, Tallahassee, FL, January, 2014.
- 26. Rushing, J. F. and J. S. Tingle, Dust Control Field Handbook, ERDC/GSL SR-06-07, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2006.

- 27. Scherocman, J. A., Construction of Durable Longitudinal Joints. Construction of Durable Longitudinal Joints. Cincinnati, Ohio, 2004.
- 28. State Highway Access Manual, Engineering Access Permits Division, Maryland State Highway Administration, Baltimore, MA, January 2004.
- 29. Zinke, S., J. Mahoney, E. Jackson, and G. Shaffer, *Comparison of the Use of Notched Wdge Joints vs. Traditional Butt Joints in Connecticut*, Report No. CT-2249-F-08-4, Connecticut Transportation Institute, Storrs, Connecticut, November 2008.

This page is intentionally left blank.

APPENDIX A. QUESTIONNAIRE RESPONSES

This page is intentionally left blank.

A.1.1. Who is responsible for designing the widening the of pavement sections?

Agency	Answer	Comments
Alabama DOT	The local Region or Division office.	
Arkansas DOT	Roadway Design Division	
Colorado DOT	The regional designers or the consultants that we hire.	
Kentucky DOT	Pavement design section or project designer.	Pavement design section or project designer depending on ADT and length of project.
Maryland DOT	The Pavement & Geotechnical Division, Pavement Design Section.	
Mississippi DOT	District Materials Engineer	Designs are developed with input from District Construction personnel and project office personnel.
Montana DOT	In-house designers and engineering consultants	The Montana Department of Transportation performs in-house design and also utilizes engineering consultants.
New Jersey DOT	Pavement Designers of NJDOT Pavement, Drainage, Management, Technology.	
New Jersey Turnpike Authority	Consultants	The New Jersey Turnpike Authority (NJTA) employs professional engineering services from outside consultants for pavement widening type projects.
New York DOT	Highway design project team.	Pavement widenings are designed on a case-by-case basis by the highway design project team. Some general guidance is given in our Highway Design Manual and our Comprehensive Pavement Design Manual, but no specific sections are required.

A.1.1. Who is responsible for designing the widening the of pavement sections?

Agency	Answer	Comments
North Carolina DOT	Typically Division Design Engineer	For projects whose main function is lane widening, the work is typically done by the Division Design Engineer. Where the lane widening is done as part of some other goal, for example bridge replacement, it may be done by design engineers in the Roadway Design Unit.
Tennessee DOT	In-house by TDOT staff	TDOT procures widening projects to grading and paving contractors through the traditional low bid system. Project design is typically performed in-house by TDOT staff.
Texas DOT Austin District	The district pavement engineer.	
Texas DOT San Antonio District	A collaboration of plan designers, area engineers, maintenance supervisors, and materials/pavement engineer.	
Texas DOT Maintenance Division	Engineers within districts.	
Virginia DOT	District Pavement Design Engineers or District Materials Engineer	
Federal Highway Administration		
National Center for	DOT personnel or	
Asphalt Technology	consultant to DOT	
University of Texas CTR	District Pavement Engineers or District Pavement Preservation Engineers.	Area Office Engineers or staff may develop widening designs and plans in many cases. Maintenance Sections also perform narrow widening projects using inhouse maintenance funds or through Routine Maintenance Contracts.

A.1.1. Who is responsible for designing the widening the of pavement sections?

Agency	Answer	Comments
Lane Construction	Owner provided Design	
Corporation	Engineer.	

A.1 SELECTION OF WIDENING PROJECTS ON FLEXIBLE PAVEMENT

A.1.2. What is the overall experience of your state with lane widening, particularly performance of the juncture between new and existing pavement?

Agency	Excellent	Good	Fair	Poor
Alabama DOT		•		
Arkansas DOT			•	
Colorado DOT		•		
Kentucky DOT		•		
Maryland DOT		•		
Mississippi DOT		•		
Montana DOT		•		
New Jersey DOT	•			
New Jersey Turnpike		•		
Authority				
New York DOT			•	
North Carolina DOT			•	
Tennessee DOT		•		
Texas DOT Austin		•		
District		·		
Texas DOT San Antonio		•		
District				

A.1.2. What is the overall experience of your state with lane widening, particularly performance of the juncture between new and existing pavement?

Agency	Excellent	Good	Fair	Poor
Texas DOT				
Maintenance Division				
Virginia DOT		•		
Federal Highway				
Administration				
National Center for				
Asphalt Technology			•	
University of Texas				
CTR			•	
Lane Construction				
Corporation			•	

A.1.3. What factors influence decisions to widen a lane?

Agency	Traffic Level	Safety	Access
Alabama DOT	•	•	
Arkansas DOT	•	•	
Colorado DOT	•	•	•
Kentucky DOT	•	•	•
Maryland DOT	•	•	•
Mississippi DOT	•	•	•
Montana DOT	•	•	
New Jersey DOT	•	•	•
New Jersey Turnpike	_		
Authority	·	·	· ·
New York DOT	•	•	
North Carolina DOT	•	•	
Tennessee DOT	•	•	•
Texas DOT Austin	•		
District	·		
Texas DOT San	•	•	•
Antonio District			
Texas DOT Maintenance Division	•	•	
Virginia DOT	•	•	
Federal Highway	•	•	
Administration	•	•	
National Center for			
Asphalt Technology		•	
University of Texas		_	
CTR	•	•	•

A.1.3. What factors influence decisions to widen a lane?

Agency	Traffic Level	Safety	Access
Lane Construction Corporation	•	•	•

A.1 SELECTION OF WIDENING PROJECTS ON FLEXIBLE PAVEMENT

Agency	Answer
Alabama DOT	Reflection of joint up through overlying layers. Occasional settlement of widened area.
Arkansas DOT	Sometimes the joint will reflect through the asphalt pavement layers. Issue has not been resolved.
Colorado DOT	No major problems. After a period of time, we will see a longitudinal crack appear. This crack is usually at a minor severity level and we will use a crack sealant to fill it during our normal maintenance period.
Kentucky DOT	Problems Raveling and occasionally settlement.
	Solutions Raveling – mill 12" width of surface or surface and one base course, like an edge key, in order to have new surface (and the upper base course if possible) overlap the joint so there is not a vertical joint between the existing and new pavement.
	Settlement – Pavement overlap (as mentioned above). Better preparation of the subgrade – perhaps excavate 1 foot and place 1 foot of rock (#2, #3, or #23) and fabric for construction platform.
Maryland DOT	Only problems are for roads originally built with concrete several decades ago, then overlaid with asphalt, then widened without any engineering with too-thin flexible pavement. The longitudinal joint eventually reflects through, but it's a minor problem compared to transverse joint reflective cracking in the composite pavement and alligator cracking in the widening.
Mississippi DOT	No major problems.

Agency	Answer
Montana DOT	A longitudinal crack can develop at times. There may also be some differential settlement between the old section and the new widening. However, it doesn't occur that frequently.
	We place the subgrade material and gravel base in 8-inch lifts and notch it into the existing road section. In addition, if the native material is questionable, we may construct the widened embankment of higher quality material (A-1-a). At least one lift of new asphalt pavement extends beyond the widened section onto the existing surface. This helps bridge over the joint.
New Jersey DOT	We notice high severity fatigue cracking in the wheel path within widened flexible pavement along composite pavement. We also observe longitudinal reflection cracking within the wheel path when widened pavement is flexible along composite pavement. For high severity fatigue cracking, we are reconstructing full depth flexible pavement within the wheel path. For reflection cracking, we are proposing special mixes: e.g. Stone Matrix Asphalt over Binder Rich Intermediate Course to inhibit reflection cracking. The selection of mix is traffic dependent. For widening with flexible pavement along flexible pavement, we do not see any additional distress because we are resurfacing entire width of travel lane by milling and paving with surface course. Therefore, we do not create any additional longitudinal cold joint on the surface between existing and widening lanes.

Agency	Answer
New Jersey	Unless a contractor employs best construction practices regarding construction and compaction of
Turnpike Authority	longitudinal pavement joints there is a tendency for them to prematurely fail. During pavement construction
	the NJTA requires the following steps be taken to ensure construction of the best performing longitudinal
	pavement joints
	1. Prior to the start of paving operations in the field NJTA convenes a Pre-Paving Meeting to discuss
	methods to be employed during construction to ensure proper construction of pavement joints.
	2. Contractor required at start of paving operations to construct a test strip for each course of pavement
	to be constructed to determine project density and rolling pattern requirements. Density is determined
	in the field by use of a nuclear density gauge, as well as core samples to correlate nuclear gauge
	results. Core results shall yield bulk and maximum specific gravities of the asphalt course and air
	void content. Nuclear density gauge results shall yield bulk specific gravity, maximum density based
	on the maximum specific gravity results obtained from core samples and air void content. The
	referenced tests are performed at various locations throughout the pavement course being constructed
	including along the longitudinal joint.
	3. During construction ensure contractor employs proper rolling techniques to minimize lateral creep
	and maximize density along the unsupported joint.
	4. During construction of adjacent lanes ensure contractor bumps material along the joint to ensure
	maximum compaction.
	*
	5. When constructing multiple pavement courses (base, intermediate and surface course) ensure
Norm Words DOT	adequate stepping of longitudinal joints to prevent the creation of a "weak zone" at the joint.
New York DOT	All pavement joints can be a problem, depending on age, quality of construction, and location. Whenever
	possible, we try to keep the widening joint out of the wheelpath. Sometimes, that means placing all of the
	widening on one side of a highway. In any event, good construction practices, particularly with the joint, are
	essential. Matching the new section to the existing is a good practice, and internal drainage should be properly
N. 4LO. P. DOT	addressed.
North Carolina DOT	We have had problems with reflective cracking. The adjacent pavement is often milled to a depth of 1.5: and a
	surface layer is placed over both the widening and the adjacent existing pavement.

Agency	Answer
Tennessee DOT	We are not aware of any mass issues with this. We occasionally experience long-term issues with longitudinal joint performance of surface mixtures on all projects, including resurfacing projects, but I am not aware of any consistent issues on widening projects.
Texas DOT Austin District	In many cases, the existing lanes have been consolidated over many years, and are relatively denser than the constructed widening. This leads to secondary consolidation of the newly constructed widening lane. In other cases, a roadway will be widened with little to no rehabilitation of the existing lanes; this is typically the case for a safety project in which the scope is limited. In this case, the existing lanes deteriorate at a higher rate than the newer constructed widened sections.
	In general, we have found it is more effective (performance and cost) to rehabilitate the full width, especially rural 2 lane roadways. We reclaim, widen, and cement stabilize the existing pavement material and use it as a strong subbase. We will place a flexible base with a surface (2 course surface treatment or hot-mix asphalt depending on the traffic needs). We will also utilize geosynthetic reinforcement when rehabilitating pavement over expansive soils to resist tensile stresses associated with soil movement.

Agency	Answer
Texas DOT San Antonio District	Problems 1) Different pavement structures between existing pavement and widened pavement (this practice stems from saw cutting existing pavement edge at various locations and adding on widened section). Led to consolidation differences in different structures, which led to cracking at the joint, which led to water infiltration, which led to failures at the joint.
	2) Widening with little to no right of way, which can be difficult to accommodate if funds are limited. Left with a small area to widen, and if it's less than 6' cannot get adequate compaction as most rollers are not smaller than 6' in width.
	3) To speed up construction, have utilized full depth HMA for widened section that is significantly deeper than the existing pavement. As a result water has been trapped in the existing lanes leading to more rapid deterioration in those lanes.
	Resolutions 1) If existing pavement is in structurally good condition, the widened pavement cross section will match the existing in order to limit differential settlement. 2) Modified saw cut location to provide at least 6' wide area for compaction.
	3) Use of a crack relief asphalt binder spanning the joint and overlay.
	4) Use of glassgrid spanning 2' on either side of the joint, but must use a hot applied AC for this application (expensive, but effective).
	5) After widening place overlay/surface treatment across all lanes.
	6) subgrade widen, spread existing material and stabilize, add new flex base and place new surface material across all lanes (~20% more expensive than just saw cut and widen with all virgin material).

Agency	Answer
Texas DOT Maintenance Division	Cracking reflected in the surface of asphalt or seal coat and in seal coat surface only surfaces, there is consolidation along the joint.
Virginia DOT	Problems 1) Non-continuous structure under widened lane leading to "break-over" when traffic begins to travel over widened portion.
	2) Longitudinal joint deteriorates quickly if not sufficiently compacted.
	Resolutions 1) Make sure design of new widened portion is sufficient for loading and joint between old and new underlying structure are not under heavy traffic.
	2) Keep joint sealed, and ensure adequate density at construction.
Federal Highway Administration	
National Center for Asphalt Technology	Joints often open with time. Joint is sealed as needed. This opening of a joint can be minimized if we ensure the use of proper materials and obtain good compaction. Also, helpful if joints in layers can be staggered. Not always possible.
University of Texas CTR	On narrow widening projects, TxDOT has experienced problems in some districts with reflective cracking, rutting in the existing (original lane), rutting in the newly widened section, and settlement of the widened section. Certain Districts have determined that scarifying and re-compacting the entire, existing pavement structure to provide a subbase, overlaid with a new base layer and surface treatment or thin overlay (still only widening each side by 2' - 8' - so narrow widening) - provides a better performing pavement. Using this method, the joints are eliminated at the pavement edge, the contractor can use full-size construction equipment to construct the project which allows better compaction operations and other benefits described below. The contractor can also maintain better quality control of the materials and construction process which results in a more uniform pavement structure across the entire width and along the project limits. When pavements are

Agency	Answer
	widened on either side by from 2' to 8' (termed narrow widening in Texas), the contractor is often not able to
	use full size construction equipment to compact the subgrade, base and surface layers. In addition, practices
	vary from district to district regarding how the widened section joint line and trench are opened during the
	initial construction phases. These practices vary even between Area Offices in the same District, but this can be
	due to changes in terrain conditions (hilly or flat), type of materials being excavated (rock, soil etc.) and other
	factors. TxDOT requires the contractor to have the widened section filled with base, compacted and primed by
	close of business each day so that traffic can operate on the narrow widening section. This typically limits
	widening project daily production rates to 1 mile or less per day. The trench section may be cut with a grader
	blade, grader blade with widening attachment, a milling machine or other types of equipment. Based on field
	visits to projects under construction, a milling machine gives the best vertical face cut and provides a good
	surface to compact the newly placed base against. Projects that use a grader blade to widen the pavement
	typically leave an uneven, cut line and joint face with base material which sluffs off into the trench. Though
	base is placed in the widened trench and compacted, poor compaction typically occurs at these sluffed areas -
University of Texas	which later allow for moisture penetration, and deformation under heavy wheel loads. In a few cases, on rough
CTR	Farm to Market roads, a contractor has first used a paver to place a thin hot mix layer using the plan quantity
	for level up material. This provides a much smoother surface for guiding the milling machine and is a good
	practice. However, problems can occur if the milling machine operator tries to maximize the amount of
	existing pavement that is left in place and runs the milling machine almost directly on the edge of the existing
	pavement. The existing pavement edge typically has the worst quality material and is composed of
	maintenance repairs, base material that is deteriorated or has vegetation growing through the pavement within
	about 6" of the edge in many cases. Thus, it is a much better practice to mill more of the existing pavement to
	ensure that the joint line is in good material. Cutting the trench line either with a grader blade or a milling
	machine at the extreme edge of the pavement to maximize use of the existing pavement structure is false
	economy and leads to joint failures (new base compacted in the widening trench is placed against older,
	deteriorated materials that are not uniform). Another problem with joint construction involves close control by
	the contractor of watering practices to keep down dust. There have been cases in which watering during hot
	summer conditions has resulted in overwatering of the new base material in the trench which is then surfaced.
	This later can lead to lower than anticipated base moduli due to wet base material, which cannot support heavy

Agency	Answer
University of Texas CTR	truck wheel loads. In other cases, the moisture within the widened base section can be drawn into the existing (very dry) pavement causing weakening of the existing pavement and rutting. Additional challenges occur when the pavement that is being widened is constructed on an embankment section. If the widened section does not have sufficient lateral support and/or the side slope is too steep, this can lead to settlement problems. The Austin District has addressed these type of issues using fabrics / goo-textiles to provide additional support in widening sections along embankment areas. Another problem which is common with all types of widening projects, not just narrow widening — is to ensure that the widening joint line is not within the wheel path. Many narrow widening projects in Texas are constructed to provide additional width along routes carrying large numbers of heavy trucks – heavy wheel loads from repetitive loads can result in deterioration of the joint again, it is better to move the joint line further into the existing pavement to reduce or eliminate this condition. Another challenge that can occur with the joint area is mis-match of the existing pavement materials with the materials used for the widening. Often contractors prefer to use asphalt stabilized base for the widened section since it is faster to place and provides a riding surface at the end of the day with need for applying any further surfacing. However, placing an asphalt stabilized base adjacent to a pavement constructed with un-stabilized granular base can easily lead to trapped moisture at the joint interface and rutting / transfer cracking once wheel loads are applied at the joint. Another type of joint failure can occur due to widening with ASB followed by extreme low winter temperatures and freezing precipitation. I have viewed projects which have been widened using ASB and had to be repaired with a new widening section and new surface which have been widened using ASB and had to be repaired with a new widening section and new s

Agency	Answer
University of Texas CTR	designs which provide inadequate drainage or improper support. Examples are: 1) Old 18' wide flexible base pavement widened 15 years ago to 22' using asphalt stabilized base. The current designer does not perform adequate project plan review or field testing to identify that the pavement has already been widened before and designs a new widening sections with granular base and surface treatment. This results in two joint lines and an intermediate section of ASB which results in variability in the lateral stiffness of the pavement structure. Since the new widened section will result in a wider lane and possibly a paved shoulder, the wheel paths can be shifted which now places heavy wheel loads on the old or new joint causing rapid deterioration. 2) Field testing using a Falling Weight Deflectometer is strongly recommended to ensure the existing pavement is a candidate for narrow widening. If the existing pavement is too weak, widening the pavement with a stronger section is false economy. 3) It is very important for the designer to research previous plans to learn the types of construction that has been performed, including previous widening projects. Drought conditions can also cause problems if trees or vegetation exist along a widened section. The root system will draw moisture from under the pavement resulting in dessication of the subgrade and base layers which can create reflective cracking at the joint as well as longitudinal cracking beginning at the pavement edge and radiating inward toward the center of the pavement with each dry season. There are many other problems that can occur at the joint line of a widened section due to inadequate compaction from inability to compact the joint material properly - narrow compaction equipment can help. However, I have personally seen contractors running a full size roller placed half-way on the existing pavement and half-way on the widened section trying to get compaction. However, any elevation differences between the surfaces can result in uneven compactive effo
Lane Construction Corporation	Florida DOT has just started in some Districts to install offset joints when tying in new flexible pavements to existing. This reduces/prevents vertical shear conditions. Unfortunately, this best management practice is not being utilized uniformly across all Florida DOT Districts.

A.2.1. Is a structural evaluation routinely conducted for lane widening projects? If so, please describe the evaluation procedure, data collected, and how collected data is used to generate a design.

Agency	Answer	Comments
Alabama DOT	No	Comments
Arkansas DOT	Yes	Soil borings and traffic data are collected. From this data, the R-value converted to a soil resilient modulus and the ESALS are used to determine the required structural number from Darwin 3.01. Using this structural number, two to three alternatives are developed. The alternatives are discussed amongst Roadway Design Division and the District overseeing construction of the project. Roadway Design Division and the District both recommend which alternate they think is best for that project, and the pavement design is sent to the Assistant Chief Engineer of Design for final alternate selection and approval. For pavement design purposes, the widening section is done like it is a full depth new section of pavement. This process will soon be updated to use PavementME instead of Darwin for the new MEPDG process.
Colorado DOT	Yes	We use a 20-year design life for the anticipated traffic, and we will get a soil profile of the existing material.
Kentucky DOT	Yes	Treat widening as a new pavement design – need CBR and ESALs to design pavement under current KY Pavement Design Procedures. Evaluate existing structure to see if overlay of existing pavement is required.
Maryland DOT	Yes	GPR, FWD and coring may be done, and a visual survey is performed. A structural evaluation similar to any other roadway would be done for the widening only, since 99 times out of 100 that will control the design.
Mississippi DOT	Yes	We use FWD, Traffic counts, AASHTO design for some of our widening projects.
Montana DOT	No	
New Jersey DOT	Yes	We design the widening portion for the expected future traffic and existing site condition and then look at the overall performance of pavement from drainage point of view. We match with the existing lane as a minimum requirement for the widening.

A.2.1. Is a structural evaluation routinely conducted for lane widening projects? If so, please describe the evaluation procedure, data collected, and how collected data is used to generate a design.

Agency	Answer	Comments
New Jersey Transit Authority	No	The NJTA has in place standard pavement sections for each of its two (2) roadways (Garden State Parkway (GSP) and New Jersey Turnpike (TPK) that have proven to be very successful in withstanding the wheel loading for the type and volumes of traffic travelling each roadway (GSP has a high volume of passenger vehicles while the TPK has a high volume of heavy truck traffic).
New York DOT	No	We have very few structural issues with our pavements. On a mature system in a wet-freeze environment, all of the structural problems have been exposed and resolved long ago. After several cycles of overlays, our pavements are thick and in most cases well-drained. Matching the new to the old will generally give good functional results.
North Carolina DOT	No	
Tennessee DOT	Yes	Core samples are collected to determine existing pavement section. Old plans of original and resurfacing projects are checked for drainage layers in order to match the existing drainage layer with new drainage layer.
Texas DOT Austin District	Yes	We use GPR and FWD.
Texas DOT San Antonio District	Yes	FWD to evaluate existing roadway condition and obtain stiffness of subgrade. Collect bores to identify if existing material is stabilized or re-usable. Backcalculate moduli values and run remaining life analysis on existing roadway to identify it's suitability for existing traffic levels.
Texas DOT	No	Generally matching existing pavement structure.
Maintenance Division		
Virginia DOT	Yes	Well, maybe. It depends on the conditions of the project. Mainly, designers attempt to mirror the existing mainline pavement structure as long as that appears to be adequate.
Federal Highway Administration	Yes	Usually an agency will conduct some coring of the paved shoulders to determine the structure.
National Center for Asphalt Technology	No	Evaluation would be best but can't always be done.

A.2.1. Is a structural evaluation routinely conducted for lane widening projects? If so, please describe the evaluation procedure, data collected, and how collected data is used to generate a design.

Agency	Answer	Comments		
University of Texas	No	Some districts do perform FWD testing of the existing pavement to ensure it is a good candidate		
CTR		for narrow widening. In some cases, it is found that the existing pavement is not a candidate for		
		narrow widening, but for full depth reclamation. Deflection testing, a field survey to examine		
		distress types, severity and location are all extremely important to ensuring a project is a		
		candidate for narrow widening and to help in designing the widening section.		
Lane Construction	No	Lane Construction is a general contractor, and the owner typically handles this process. On		
Corporation		design build projects when we have input into pavement selection/design, we do look at this		
		detail.		

A.2.2. Does your agency have a requirement to match widened pavement sections to existing pavement sections?

Agency	Yes	No
Alabama DOT	•	
Arkansas DOT		•
Colorado DOT		•
Kentucky DOT		•
Maryland DOT		•
Mississippi DOT		•
Montana DOT		•
New Jersey DOT	•	
New Jersey Transit Authority	•	
New York DOT	•	
North Carolina DOT		•
Tennessee DOT	•	
Texas DOT Austin District	•	
Texas DOT San Antonio District	•	
Texas DOT Maintenance Division		•
Virginia DOT	•	
Federal Highway Administration	•	
National Center for Asphalt Technology		•
University of Texas CTR		•
Lane Construction Corporation		•

A.2.3 What design method is used?

	AASHTO Design		Other Internal Design	
Agency	Guide	MEDPG	Procedure	Comments
Alabama DOT			•	Widening is typically designed with the same buildup as existing roadway.
Arkansas DOT	•			Currently, AHTD still uses the AASHTO Design Guide, but we are in the process of moving to MEPDG. We are running both designs parallel right now, but using the AASHTO Design Guide for the final decision.
Colorado DOT		•		Prior to July 1, 2014, CDOT used the AASHTO Design Guide.
Kentucky DOT			•	We use the KY ME Design Method: uses KY soaked CBR and KY ESALs to evaluate with our M-E design curves. We plan to migrate to new curves based on our results of MEPDG Analysis and Calibration/Verification in the near future.
Maryland DOT			•	Our internal design procedure makes use of AASHTO 1993, MEPDG and RSL, since individually all have their limitations.
Mississippi DOT	•			
Montana DOT	•			We use the ASHTO Design guide for surfacing design but that doesn't address subgrade issue. Though it's not a requirement, we typically match the surfacing.
New Jersey DOT	•			
New Jersey Transit Authority			•	The NJTA has its own Design Manual consultants must follow during the design process. For items not adequately covered in the Manual the consultant is referred to AASHTO A Policy on Geometric Design of Highways and Streets and AASHTO Roadside Design Guide.

A.2.3 What design method is used?

Agency	AASHTO Design Guide	MEDPG	Other Internal Design Procedure	Comments
New York DOT			•	We have a series of design charts based very loosely on the 1986 AASHTO design method, heavily modified to reflect New York experience and performance.
North Carolina DOT	•			
Tennessee DOT	•			AASHTO Design Guide '93.
Texas DOT Austin District			•	TxDOT FPS21.
Texas DOT San Antonio District			•	FPS21, DarWIN (for concrete).
Texas DOT Maintenance Division			•	For other widening that is substantial, meaning a full lane, etc, a design evaluation will be performed with state specific design software (FPS21).
Virginia DOT	•			
Federal Highway Administration	•			Currently the MEPDG is only used for the pavement design of new or total reconstruction of pavements. Other factors such as matching the existing pavement are usually the key drivers for design of widening projects. Most times a pavement design will be required and conducted (typically using AASHTO 93 or other state approved procedure), but it is not the primary driver for the structural makeup of the widening. Usually matching existing pavement and grade considerations (curb and gutter) drive the pavement design.
National Center for Asphalt Technology	•			Typically use standard design procedure, which may vary from state to state. At this point most still use AASHTO or some form of AASHTO.

A.2.3 What design method is used?

Agency	AASHTO Design Guide	MEDPG	Other Internal Design Procedure	Comments
University of				FPS 19 is a TxDOT flexible pavement design program used for designing
Texas CTR			•	full width pavements. This program can be used to help design a widening section, but the program does not incorporate a specific module for this purpose. Many designs are based on district experience, previous performance history and the specific conditions of the project. The TxDOT Pavement Design Guide does indicate that drainage conditions should be considered when designing a widening section - however, as previously discussed actual practice can vary from district to district.
Lane Construction Corporation				Done by others.

A.2.4. Where is the joint between existing and new structure located?

Agency	Answer					
Alabama DOT	The joint is at the edge of existing pavement.					
Arkansas DOT	The location varies based on the existing lane widths, the existing number of lanes, the new lane widths, and the new number of lanes.					
Colorado DOT	We try and get the sawcut at the lane line or within 2 feet of the lane line. We try to enforce them to stay away from any wheel path.					
Kentucky DOT	Usually 12 inches inside limits of existing pavement.					
Maryland DOT						
Mississippi DOT						
Montana DOT	We typically cut the pavement 1 foot from the edge of pavement. It may vary depending on the condition of the paved shoulder					
New Jersey DOT	Having the longitudinal joint on the surface within the wheel path is not desirable, and we do not allow it. As mentioned above, we resurface the entire width of travel lane to avoid having the joint in a wheel path.					
New Jersey Transit						
Authority	For the construction of multiple course pavements the NJTA has established longitudinal pavement stepping requirements. One additional requirement the NJTA has with regard to the planned location of longitudinal joints in the surface course is that they be offset 1'-0" from the proposed location of traffic stripes. This is to allow for future crack sealing of longitudinal joints without compromising traffic stripes.					
New York DOT	Whenever possible, it is located outside of the wheelpath. If that cannot be accommodated, then a different solution, such as reconstruction, is often considered. Widening joints directly in the wheelpath underperform compared to the rest of the pavement.					
North Carolina DOT	Typically where the existing pavement ends.					
Tennessee DOT	It depends on the cross section of the old and new pavement. In some situations, it exists at the middle of the lane not on the wheel path.					
Texas DOT Austin District	When widening to existing structures, we stagger joints. Sometimes this means milling into the adjacent existing section. We also use a seal coat over the final structure, full width to seal off all construction joints prior to the final surface course.					
Texas DOT San Antonio District	Preferred to be at the edge of a lane, but if not possible limit to center of the lane.					

A.2.4. Where is the joint between existing and new structure located?

Agency	Answer
Texas DOT	Generally within 4 feet of the edge on narrow widenings and 12-14 feet from the edge on extra lanes. Avoid
Maintenance	wheel paths.
Division	
Virginia DOT	At least 12" into existing pavement.
Federal Highway Administration	A best practice is usually to offset joints 6 inches between successive lifts. This is difficult to do in a widening project. Most often a final lift is placed on the whole roadway, which can span the widening and help mitigate the stacking of the underlying joint. Often a crack will develop at the widening joint.
National Center for Asphalt Technology	The joint is located at the edge of existing pavement. It is good if this can be done in conjunction with an overlay so that the overlay can be placed over existing pavement and widening section. This will help to improve the performance over the joint where widening begins.
University of Texas CTR	The location of the joint line can vary as previously discussed. Some designers try to maximize use of the existing pavement width and place the joint line within 6" of the pavement edge. This is a bit tricky since the "existing pavement edge' on an FM road can be variable due to repairs or deterioration. Some plans specify that the joint is placed 1' inside the lane - other projects place the joint line further into the lane to ensure that the widened section is constructed adjacent to good quality material.
Lane Construction Corporation	Preferred placement is 1.0' offset into the top lift of adjacent flexible pavement section.

A.2.5. What special treatments are used to ensure the longitudinal joint (between new pavement and existing pavement) gives good performance?

Agency	Answer
Alabama DOT	Edge of existing pavement must be neatly cut with motor grader wheel or saw and covered with asphalt tack or
	joint sealant prior to placement of new asphalt mix for widening.
Arkansas DOT	None.
Colorado DOT	Usually we will put a 2-inch HMA overlay across the entire width.
Kentucky DOT	Mill 12 inches into existing pavement; either surface depth or perhaps half depth if possible.
Maryland DOT	No special treatments; just follow specifications.
Mississippi DOT	We use a sealer.
Montana DOT	We place the subgrade material and gravel base in 8-inch lifts and notch it into the existing road section. In addition, if the native material is questionable, we may construct the widened embankment of higher quality material (A-1-a). At least one lift of new asphalt pavement extends beyond the widened section onto the existing surface. This helps bridge over the joint.
New Jersey DOT	Paving entire width of travel lane or avoiding joint on the surface within the wheel path.
New Jersey Transit Authority	Unless a contractor is paving in echelon the NJTA requires all cold longitudinal joints to receive a coating of polymerized joint adhesive.
New York DOT	We match the existing section as closely as possible, and we cut back the existing pavement layers so that new layers can be "stepped" onto the existing section.
North Carolina DOT	None—pavement is often milled to a depth of 1.5-inces, and a surface layer is placed over both the widening and the adjacent existing pavement.
Tennessee DOT	Not aware of any special treatment techniques being used. We do specify that on all HMA construction projects and application of bituminous material (tack coat) is required to be placed on the face of all joints prior to paving.
Texas DOT Austin District	See answer to question 2.4. We also require milling equipment to construct vertical cuts.
Texas DOT San Antonio District	Rubberized asphalt, grid reinforcement and hot applied tack coat, staggered mill/overlays.

A.2.5. What special treatments are used to ensure the longitudinal joint (between new pavement and existing pavement) gives good performance?

Agency	Answer
Texas DOT	Nonealthough materials selection can come into play. Some areas (districts) will use full depth HMAC to
Maintenance	avoid consolidation issues.
Division	
Virginia DOT	Tack construction joint, and extend into existing pavement structure.
Federal Highway	Proper tacking of the joint, use of Crafco joint adhesive, staggering joints, fogging of the joint after
Administration	construction.
National Center for	Compaction is key. May want to overbuild slightly immediately adjacent to joint so that good compaction can
Asphalt Technology	be obtained. We are now doing this on airfields where asphalt is placed next to concrete and it seems to perform much better because of the increased density.
University of Texas	Some projects incorporate fabrics or geotextiles to help stabilize the widening section. In some cases, the
CTR	contractor will spray the joint face with water to help 'bond' the widening material to the existing material,
	though the effectiveness of this practice is not proven. I have seen references from other states or countries that
	show the contractor spraying the joint with an asphalt tack coat, though I have not seen this practice in Texas.
Lane Construction	Bind top lift(s) of structural asphalt with 1.0' minimum overlap joint.
Corporation	

A.2.6. Do you have design guidance on lane widening and design of the longitudinal joint? If so, please provide what design guidance is used.

Agency	Yes	No	Comments
Alabama DOT		•	
Arkansas DOT	•		We have guidance on minimum widths for constructability purposes. If there widening width is small, we shift the alignment to one side and do all of the widening to one side if possible. Also, in curb and gutter sections where the widening is 4' or less, we provide quantities of Portland Cement Concrete Base to use in the widening instead of aggregate or asphalt. We then overlay the PCCB with 2"-4" of ACHM Surface Course.
Colorado DOT		•	
Kentucky DOT		•	Mill 12 inches wide in order to overlap the joint with new pavement. Try to prevent a completely "cut through" vertical joint.
Maryland DOT	•		For the lane widening, must be at least 4' wide to be constructed with asphalt. Narrower must have a concrete base. Total pavement box should be at least as thick as the adjacent pavement.
Mississippi DOT		•	We haven't done a lot of widening projects since I started doing them on a regular basis, but I just work with input from District Construction and project officer personnel when I do them.
Montana DOT		•	We have guidance on what issues must be addressed when a project involves widening. However, this guidance does not apply to surfacing structure or widening techniques.
New Jersey DOT		•	We do not have any written guideline. We evaluate each project based on the design procedure discussed above.
New Jersey Transit Authority		•	Beyond the responses provided above the NJTA does not provide specific design guidance on the construction of longitudinal pavement joints.
New York DOT		•	We have very general guidance only. In our Highway Design Manual: https://www.dot.ny.gov/divisions/engineering/design/dqab/hdm/chapter-3 In our Comprehensive Design Manual:
			https://www.dot.ny.gov/divisions/engineering/design/dqab/cpdm

A.2.6. Do you have design guidance on lane widening and design of the longitudinal joint? If so, please provide what design guidance is used.

Aganan	Yes	No	Comments
Agency	1 es	110	Comments
North Carolina		•	
DOT			
Tennessee DOT		•	
Texas DOT			
Austin District			
Texas DOT San		_	
Antonio District		•	
Texas DOT			
Maintenance		•	
Division			
Virginia DOT	•		
Federal			
Highway			
Administration			
National Center			
for Asphalt		•	Stagger joints if possible. Consider overbuilding slightly to improve compaction.
Technology			
University of			Project 0-6748 has provided a compendium of best practices and lessons learned. However, it
Texas CTR		•	is uncertain if this information is being considered for development of design standards,
			recommendations or other guidance.
Lane			
Construction		•	
Corporation			

A.2.7. Do you have special provisions on your construction specifications? If so, please describe what special provisions are typically included.

Agency	Yes	No	Comments
Alabama DOT		•	
Arkansas DOT		•	No special provisions for longitudinal joint construction.
Colorado DOT		•	
Kentucky DOT		•	
Maryland DOT		•	
Mississippi DOT			
Montana DOT		•	Requirements provided earlier are part of our standard specifications.
New Jersey DOT	•		Standard Specifications require HMA surface course to be constructed for the full width of the travel lane.
New Jersey Transit Authority	•		
New York DOT		•	
North Carolina DOT		•	
Tennessee DOT		•	
Texas DOT Austin District		•	
Texas DOT San Antonio District		•	
Texas DOT Maintenance Division		•	
Virginia DOT	•		For trench widening, add notes to special provisions. Otherwise, use standard drawing.

A.2.7. Do you have special provisions on your construction specifications? If so, please describe what special provisions are typically included.

Agency	Yes	No	Comments
Federal Highway Administration			
National Center for Asphalt Technology		•	
University of Texas CTR	•		Narrow widening projects often include a general note indicating that the joint line is 'saw cut'. However, in practice, based on interviews, this can mean use of a milling machine, use of a motor grader with a coulter blade (an agricultural implement) or a grader with a widening attachment. Other general notes relate to requirements limiting widening to 1 mile or less based on a demonstration by the contractor that the amount of widening trench opened can be filled and compacted to provide a widening surface within the same business day. Some plan sets also include a detail drawing of the widening joint; however, this varies.
Lane Construction Corporation		•	

A.2.8. Are any special materials such as geotextiles, stabilizing agents, or special mixes used, particularly along the longitudinal joint? If so, please describe what special materials are typically used.

Agency	Yes	No	Comments
Alabama DOT		•	
Arkansas DOT		•	Geotextile fabrics have been used in research projects.
Colorado DOT		•	
Kentucky DOT		•	Might try a geogrid "glass grid" over the joint. We have used this method on JPC joint repairs before AC overlays.
Maryland DOT		•	
Mississippi DOT	•		We have used a geotextile fabric, and/or geogrid on some projects.
Montana DOT			We may use a higher quality fill material for the construction of the subgrade. Geotextiles may be used in very limited situations.
New Jersey DOT		•	We do not have any special mixes for the joint. Per our Standard Specification, we apply a uniform coating of polymerized joint adhesive to the existing/old vertical surface before paving. This coating is required on all cold joints.
New Jersey Transit Authority	•		While the NJTA will specify the use of all of the above the only material specifically used at longitudinal joints is Polymerized Joint Adhesive.
New York DOT		•	Normal materials are used, and stepped if possible. Fabrics of any kind are not strong enough to resist the forces involved at a widening joint.
North Carolina DOT		•	
Tennessee DOT		•	
Texas DOT Austin District	•		We use geogrid reinforcement to minimize reflective cracking associated with movement at the edge of pavement.
Texas DOT San Antonio District	•		Rubberized asphalt, grid reinforcement and hot applied tack coat, staggered mill/overlays.

A.2.8. Are any special materials such as geotextiles, stabilizing agents, or special mixes used, particularly along the longitudinal joint? If so, please describe what special materials are typically used.

Agency	Yes	No	Comments
Texas DOT Maintenance Division	•		Sometimes cement treated where cement, concrete, or asphalt is there originally. Geogrid is used on occasion.
Virginia DOT		•	
Federal Highway Administration	•		Crafco joint adhesive.
National Center for Asphalt Technology		•	
University of Texas CTR	•		Geotextiles are sometimes used as previously discussed.
Lane Construction Corporation		•	Not necessary.

A.2.9. What quality control testing and inspection is conducted to ensure lane widening and joint construction meets requirements at the *subgrade level*?

_	
Agency	Answer
Alabama DOT	Compaction of subgrade is required to the satisfaction of the Engineer.
Arkansas DOT	In-place densities must be 95% of maximum laboratory density; 1 test per 12,000/sy.
Colorado DOT	We require moisture/density control on the subgrade material. If required, we will specify a minimum R-Value for the subgrade material.
Kentucky DOT	Must meet our standard specifications like any other project.
Maryland DOT	Refer to the specifications. Nothing extraordinary.
Mississippi DOT	Densities on underlying material, regular QC testing on materials used.
Montana DOT	Standard inspection procedures are used to ensure that the subgrade is constructed according to specifications (8" lifts, notching into existing embankment, compaction tests).
New Jersey DOT	We do not have any additional QC testing.
New Jersey Transit Authority	Prior to the start of paving operations in the field NJTA convenes a Pre-Paving Meeting to discuss methods to be employed during construction to ensure proper construction of pavement joints. Contractor required at start of paving operations to construct a test strip for each course of pavement to be constructed to determine project density and rolling pattern requirements. Density is determined in the field by use of a nuclear density gauge.
New York DOT	Proper compaction and drainage installation.
North Carolina DOT	As specified in standard specifications.
Tennessee DOT	Efforts are made to make sure subgrade resilient moduli are similar (existing to widening).
Texas DOT Austin	Visual inspection by TxDOT inspection. Density controlled.
District	
Texas DOT San	Typically a proof roll and correcting soft spots.
Antonio District	
Texas DOT	Depending on the width of the widening, this could be density control or "ordinary" compaction.
Maintenance	
Division	
Virginia DOT	Standard soils QA testing: soil moisture and compaction.

A.2.9. What quality control testing and inspection is conducted to ensure lane widening and joint construction meets requirements at the *subgrade level*?

Agency	Answer
Federal Highway	
Administration	
National Center for	Ensure good density adjacent to joint and elsewhere. Use nuclear gage. Ensure satisfactory materials used.
Asphalt Technology	Ensure surface of subgrade at proper elevation.
University of Texas CTR	Based on field visits to on-going narrow widening construction projects, compaction of the subgrade might or might not be performed. The majority of districts do not stabilize the subgrade due to delays in construction and opening to traffic by close of business. Some contractors use narrow pneumatic tired or steel wheel rollers to compact the subgrade. I have not personally seen any type of testing performed to ensure that uniform compaction was achieved.
Lane Construction Corporation	None.

A.2.10 What quality control testing and inspection is conducted to ensure lane widening and joint construction meets requirements at the base level?

requirements at the t	ase level:
Agency	Answer
Alabama DOT	Compaction of any base material is required to the satisfaction of the Engineer.
Arkansas DOT	In-place densities.
Colorado DOT	Typically, CDOT will use at least 6 inches of an Aggregate Base Course material. We will monitor the moisture/density and gradation of this material.
Kentucky DOT	Must meet our standard specifications like any other project.
Maryland DOT	Refer to the specifications. Nothing extraordinary.
Mississippi DOT	Densities on underlying material, regular QC testing on materials used.
Montana DOT	Standard inspection procedures are used to ensure that the subgrade is constructed according to specifications (8" lifts, notching into existing embankment, compaction tests).
New Jersey DOT	We do not have any additional QC testing.
New Jersey Transit Authority	The NJTA has stringent requirements for the types of materials used, as well as how they are to be placed, graded and tested to ensure construction of long-lasting roadway pavement.
New York DOT	Proper compaction and joint construction, including tack coats. "Base" is our bottom layer of hot mix asphalt. The granular subbase beneath is simply properly compacted.
North Carolina DOT	As specified in standard specifications.
Tennessee DOT	Aggregate bases are compacted to required density adjacent to existing and are the same thickness bituminous bases (drainage layers) are aligned to insure that subsurface water can be removed effectively. If the old pavement has a drainage layer, one is provided for the new also.
Texas DOT Austin District	Visual inspection by TxDOT inspection. Density controlled.
Texas DOT San	Potential use of geogrid, density control/thickness control.
Antonio District	
Texas DOT	Depending on the width, there might be density control or "ordinary" compaction.
Maintenance	
Division	
Virginia DOT	Standard asphalt concrete QA testing: thickness, density.

A.2.10 What quality control testing and inspection is conducted to ensure lane widening and joint construction meets requirements at the base level?

Agency	Answer
Federal Highway	
Administration	
National Center for	Ensure good materials are used and adequate density obtained. Ensure surface of base at proper elevation.
Asphalt Technology	Watch out for segregation, which may be a big problem in these areas.
University of Texas CTR	Base material is typically placed using a belly dump and then worked back and forth with a grader. This material is then bladed into place and compacted. I have not seen any specific type of testing performed to ensure adequate compaction or consistent compaction along the joint; though I have only visited perhaps 8 or 10 projects. Practices might vary from district to district.
Lane Construction Corporation	None.

A.2.11 What quality control testing and inspection is conducted to ensure lane widening and joint construction meets requirements at the structural asphalt level?

requirements at the structural asphalt level?	
Agency	Answer
Alabama DOT	Compaction is required to the satisfaction of the Engineer. The asphalt mixture must also meet various test at
	the point of production, i.e., asphalt content, air voids, VMA, etc.
Arkansas DOT	Field or laboratory densities; 1 per sublot, or 750 tons.
Colorado DOT	CDOT follows all our typical HMA requirements.
Kentucky DOT	Must meet our standard specifications like any other project.
Maryland DOT	Refer to the specifications. Nothing extraordinary.
Mississippi DOT	Densities on underlying material, regular QC testing on materials used.
Montana DOT	We have standard testing procedures for all asphalt paving. These are included in Section 401 of our standard
	specifications. They can be found on the MDT website at the following location:
	http://www.mdt.mt.gov/business/contracting/standard_specs.shtml
New Jersey DOT	We do not have any additional QC testing for longitudinal joints, but we are in process of developing a
	specification with required QC testing for all longitudinal cold joints.
New Jersey Transit	Prior to the start of paving operations in the field NJTA convenes a Pre-Paving Meeting to discuss methods to
Authority	be employed during construction to ensure proper construction of pavement joints. Contractor required at start
	of paving operations to construct a test strip for each course of pavement to be constructed to determine project
	density and rolling pattern requirements. Density is determined in the field by use of a nuclear density gauge,
	as well as core samples to correlate nuclear gauge results. Core results shall yield bulk and maximum specific
	gravities of the asphalt course and air void content. Nuclear density gauge results shall yield bulk specific
	gravity, maximum density based on the maximum specific gravity results obtained from core samples and air
	void content. The referenced tests are performed at various locations throughout the pavement course being
	constructed including along the longitudinal joint.
New York DOT	Proper compaction and joint construction, including tack coats.
North Carolina DOT	As specified in standard specifications.
Tennessee DOT	New pavement thickness is equivalent to existing and compacted as required.
Texas DOT Austin	Visual inspection by TxDOT inspection. Longitudinal joint density and in-place air voids.
District	

A.2.11 What quality control testing and inspection is conducted to ensure lane widening and joint construction meets requirements at the structural asphalt level?

requirements at the structural asphalt level?			
Agency	Answer		
Texas DOT San	Longitudinal joint density profiles, thermal profiles, visual inspection.		
Antonio District			
Texas DOT	If asphalt is placed, the normal placement specifications are used. Generally, narrow widths with primarily		
Maintenance	granular base are with covered with a chip seal.		
Division			
Virginia DOT	Standard asphalt: thickness, density, straightedge (maybe).		
Federal Highway			
Administration			
National Center for	Ensure mix is satisfactory. Watch out for segregation. Apply tack between existing pavement and widening		
Asphalt Technology	material. Ensure good compaction. May want to overbuild slightly on top layer so that adequate density can be		
	obtained. If possible stagger joint. For example if widening is done in conjunction with overlay, the joint can		
	be staggered in the upper joint(s).		
University of Texas	Narrow widening projects are quite often funded using Safety Bond money or Highway Safety Improvement		
CTR	Program funds which do not allow for structural strengthening of the pavement during a widening project. The		
	idea of these funds (CAT 3) are to provide for widening of the pavement for safety purposes at the maximum		
	Benefit / Cost ratio. This precludes use of a structural ACP layer and typically involves placement of a surface		
	treatment. On projects funded with CAT 1 funds, again these projects are often lower volume routes that might		
	carry heavy trucks, but placing a structural ACP layer across the entire pavement surface would in most cases		
	be considered cost prohibitive.		
Lane Construction	None.		
Corporation			

A.2.12 What is your agency's practice, as related to lane widening projects, concerning use of subgrade and base stabilization?

Agency	Answer
Alabama DOT	Typically not required.
Arkansas DOT	It is not used much, mainly due to limited area of most notch and widen jobs. Most jobs are not widened
	enough to allow machinery to apply and mix stabilization.
Colorado DOT	No standard practice.
Kentucky DOT	Generally we use the these forms of stabilization:
	1. 1 foot rock and fabric
	2. 3 inches extra DGA and geogrid
	3. Chemical stabilization (lime or cement)
	For a small lane addition project such as widening for a left turn lane, chemical stabilization is not typically
	worth the effort and we would normally use: 1 foot of rock and fabric or geogrid. For the interstate widening
	projects, we have been using cement or lime stabilization most often.
Maryland DOT	Refer to the specifications. Nothing extraordinary.
Mississippi DOT	Chemical treatment of materials by either lime or concrete stabilization, depending on the plasticity index
	and/or volume change of material in-place. Also removing any high volume change material and backfilling
	with borrow excavation.
Montana DOT	We haven't used chemical stabilization, but we are researching various methods.
New Jersey DOT	If necessary, we do consider subgrade stabilization. We are also considering using Cold-in-place (with foam or
	emulsion) and Full Depth Reclamation with cement (one project already completed successfully) for
	reconstructing thin shoulder.
New Jersey Transit	The level of subgrade and base stabilization on NJTA projects is dependent upon underlying soil conditions.
Authority	On recent GSP Bridge replacement and widening contracts in areas with soil conditions known to be poor
	geotextiles were utilized to provide rigidity to fill material placed within the roadway to prevent future roadway
	settlement. The NJTA is just now experimenting with subsurface grout injection below sections of roadway
	constructed in known marshy areas and experiencing considerable settlement.
New York DOT	We do not use subgrade or subbase stabilization.
North Carolina DOT	Subgrade and base stabilization are typically not used.

A.2.12 What is your agency's practice, as related to lane widening projects, concerning use of subgrade and base stabilization?

Agency	Answer
Tennessee DOT	We do not generally use geosynthetics or grids for stabilization. If the existing subgrade was stabilized, we would require similar stabilization on the proposed or undercut the existing to provide a thickness (equivalent) aggregate layer.
Texas DOT Austin District	Typically reclaim and cement stabilize existing materials.
Texas DOT San Antonio District	Lime stabilization of subgrade, geogrid on top of subgrade, cement stabilization of base, geogrid on top of stabilized base.
Texas DOT Maintenance Division	Narrow width pavements do not have stabilized subgrade and might use cement treated base. Larger widths might have lime treated subgrade, cement treated subgrade, and/or lime or cement treated base.
Virginia DOT	Depends on the soils.
Federal Highway Administration	
National Center for Asphalt Technology	Stabilization may be helpful. Depending on size of widening project may want to consider flowable fill.
University of Texas CTR	Unless the narrow widening is being performed through full depth reclamation, it is very unlikely that subgrade or base chemical stabilizers would be used due to construction delays and the need to open the entire lane including the widening section back to traffic. As previously mentioned, ASB might be used on some projects and is likely the most common stabilized material used for base layers.
Lane Construction Corporation	

A.2.13 What is your agency's practice, as related to lane widening projects, concerning selection of base and surface course materials?

Agency	Answer			
Alabama DOT	When required, local material sources used for borrow or aggregate material.			
Arkansas DOT	Typically asphalt is used, but if the Contractor requests to use Portland cement concrete base on curb and gutter			
	projects at no additional cost to the Department, it is usually granted.			
Colorado DOT	No standard practice.			
Kentucky DOT	Must meet current Superpave requirements.			
Maryland DOT	See previous.			
Mississippi DOT	Base materials (borrow excavation) depends on the availability of materials in the area. HMA depends on the			
	ADT and % truck traffic as to which type to be used.			
Montana DOT	They must meet our standard specifications.			
New Jersey DOT	We do not have separate criteria for selection of material for the widening section. We select surface course for			
	the project depending upon the traffic loading, type of pavement (flexible or composite) etc.			
New Jersey Transit	Standard NJTA pavement practices dictate the use of polymer modified surface and intermediate course			
Authority	pavements such as HMA 12.5M76 Surface Course and HMA 19M76 Intermediate Course.			
	The use of polymer modified binder is to provide better temperature stability and higher rut resistance. HMA			
	mixes with an "M" compaction level are used for improved crack resistance (higher AC content).			
	OGFC and AR-OGFC surface course mixes are specified on GSP projects in areas with residential			
	neighborhoods located immediately adjacent the NJTA right-of-way.			
New York DOT	Ordinary materials are used, similar to the rest of the project.			
North Carolina DOT				
Tennessee DOT	Aggregate base is usually limestone or river gravel (depending on available materials) and similar in thickness			
	to the original. Surface course materials are similar as we can make them and drainage courses are aligned,			
	when present.			
Texas DOT Austin	No different than ordinary pavement design and construction.			
District				

A.2.13 What is your agency's practice, as related to lane widening projects, concerning selection of base and surface course materials?

Agency	Answer
Texas DOT San Antonio District	Base: depending on confining pressure from roadway width (i.e. shoulders > 3') will require a more cohesive material that meets triaxial test requirements. Surface course: nothing that is not considered for typical roadway repair.
Texas DOT Maintenance Division	This is district (regional) dependent. Lower volume roadways will have a fine, dense grade aggregate base or HMAC. HMAC depends on how difficult roadway is to build under traffic and how narrow a placement. Lower volume roadways will most likely be two chip seals and larger might have 2-6" of HMAC. Most of the HMAC is dense grade and increasing use of Superpave HMAC.
Virginia DOT	Match existing until surface. Then attempt to apply new surface across all lanes.
Federal Highway Administration	
National Center for Asphalt Technology	Use existing specs for base and surface course materials.
University of Texas CTR	Texas is a very large state with large variations in rainfall east to west, freezing temperatures north to south and local material types. Traffic conditions also vary extensively due to energy sector development (oil, gas, wind energy), agriculture, dairy farming, quarry operations, industry, port and freight activity etc. Thus, design practices and methods vary across the state though practices are standardized in relation to the geometric design factors considering the functional classification of the route. The geometric design factors and the pavement design need to be considered together since certain criteria such as heavy truck off-tracking, the design vehicle used for the project, side slope rates, and other factors also affect pavement performance.
Lane Construction Corporation	

A.2.14 What is your agency's practice as related to lane widening projects, concerning design of narrow trench repairs for deteriorated longitudinal joints?

Agency	Answer		
Alabama DOT	No standard practice. If cracked, we typically mill it off to surface treatment and repave.		
Arkansas DOT	Does not occur; narrow trenches and repair of longitudinal joints only are uncommon.		
Colorado DOT	No standard practice. We have filled large (greater than 1 inch) cracks with 1/2 inch nominal aggregate size		
	HMA. Sometimes, we will use a pothole material to fill the large cracks.		
Kentucky DOT	 Level and wedge as necessary rather than trench the joint. 		
	 Possibly use a geogrid glass-grid if available funding. 		
	Milling and inlaying is also considered.		
Maryland DOT	If deeper than one lift, must be at least 4' wide to ensure adequate compaction.		
Mississippi DOT	Remove and replace failing materials and backfill with HMA. Most of our recent repairs have been on		
	preventative maintenance projects.		
Montana DOT	We have not used this treatment.		
New Jersey DOT	We have provision for HMA repair prior to milling and paving. We include item and quantity for the project, if		
	necessary.		

A.2.14 What is your agency's practice as related to lane widening projects, concerning design of narrow trench repairs for deteriorated longitudinal joints?

Agency	Answer
New Jersey Transit Authority	The NJTA has in place an annual pavement-resurfacing program on both the GSP and TPK roadways. Areas of deteriorated pavement are milled to a consistent depth and resurfaced. Typically, one lane is milled and resurfaced before the adjacent lane is started. In this manner the construction of the new pavement surface course is never unsupported and so long as the new pavement is "bumped" at the longitudinal joint good compaction is typically achieved. When resurfacing the adjacent lane the milling operation is required to extend approximately 2" into the new lane pavement further minimizing any areas of lower compaction. In addition, the use of Polymerized Joint Adhesive improves the bond between lanes contributing to a better performing longitudinal joint. As a result, we are seeing a reduction in moderate to severe joint failures. At areas where longitudinal joint failure is experienced and the quantity of repair considerable the NJTA has performed narrow "trench type" joint repairs by using a small milling machine. In areas of localized joint failure saw-cutting and jackhammering is used. The keys to a good joint repair are neat vertical edges, clean repair area, sufficient tack coat placement to all existing surfaces and sufficient material placed to ensure good densification.
New York DOT	We do not do trench repairs. They create two longitudinal joints where previously there was only one. It doubles your troubles.
North Carolina DOT	
Tennessee DOT	I do not know of any project with this treatment.
Texas DOT Austin District	If the circumstance permits, we would use full depth hot-mix asphalt.
Texas DOT San Antonio District	Not used.
Texas DOT Maintenance Division	Generally does not occur. Cold mix patching material is probably used most frequently to level up depressions and smooth joints.
Virginia DOT Federal Highway	No standard practice.
Administration	

A.2.14 What is your agency's practice as related to lane widening projects, concerning design of narrow trench repairs for deteriorated longitudinal joints?

Agency	Answer
National Center for Asphalt Technology	Flowable fill might be good here. Difficult to place material in trenches and obtain good compaction.
University of Texas CTR	Localized maintenance repairs will vary significantly from district to district. Edge repairs are often performed using a grader with a widening blade attachment, a dump truck(s) with cross conveyer - the edge repair typically uses RAP and is not a structural widening, it is to provide edge repairs and at times additional width for striping.
Lane Construction Corporation	

A.3.1. Has your agency encountered problems with placing a widening joint in the wheel path? Please briefly describe difficulties and resolutions.

Agency	Yes	No	Comments
Alabama DOT	•		Occasional reflective cracking of joint up through overlying layers.
Arkansas DOT		•	Joints in the wheel path are avoided.
Colorado DOT		•	
Kentucky DOT	•		Joints in the wheel path can ravel worse. We strive to keep joints out of the wheel path.
Maryland DOT		•	
Mississippi DOT			
Montana DOT	•		Sometimes. We try to avoid placing the joint in the wheel path. It can create a longitudinal joint. We typically seal the crack and may do rut filling if needed.
New Jersey DOT		•	Depending upon needs for the project, a joint between existing and widening section may exist within the wheel path. However, our specification requires paving entire width of travel lane to avoid any longitudinal cold joint on the surface. We have not noticed any problem due to joint below surface course. Also, all widening needs to be completed prior to the main line treatment.
New Jersey Transit Authority	•		The placement of longitudinal joints within the wheel path is not desirable and should be avoided to the fullest extent possible. Even a well-constructed joint placed in a wheel path has a tendency to fail in time.
New York DOT	•		Joints in the wheelpath collect water, deteriorate faster, and ravel out. Durability of the surface courses is a major problem. Keep widening joints out of the wheelpath.
North Carolina DOT	•		Pavement deterioration occurs in this case. The most common resolution is repeated repair.
Tennessee DOT	•		For that reason we do everything possible to keep a construction joint from occurring in the wheel path.
Texas DOT Austin District	•		The joint ravels or ruts. We purposely design the joint to be placed between the wheel paths.
Texas DOT San Antonio District	•		This is always a problem and will always lead to a maintenance issue. Modify joint to middle of the lane, or place grid/crack relief layer at the joint and overlay.

A.3.1. Has your agency encountered problems with placing a widening joint in the wheel path? Please briefly describe difficulties and resolutions.

Agency	Yes	No	Comments
Texas DOT Maintenance Division	•		Cracking at the joint and consolidation at the joint. Moving joint out of wheelpath is best resolution. Structural section and attention to consolidation of materials has helped.
Virginia DOT	•		Particularly when significant materials change (not recommended), as in when full-depth asphalt lanes are added to rigid existing, we've experienced a "break-over".
Federal Highway Administration			
National Center for Asphalt Technology	•		Very difficult to obtain good performance when joint is in wheel path. Good materials and compaction must be obtained. Also, may want to stagger joint for each layer being constructed.
University of Texas CTR	•		As previously discussed
Lane Construction Corporation	•		Some limited Florida DOT projects have placed by design a longitudinal joint in the wheel path. Apparent design flaw appears to be the result of inexperienced designers or the desire to save a buck by minimizing new pavement section area.

A.3.2. How does your agency resolve problems with vertical construction faces at the widening joint? Please briefly describe difficulties and resolutions.

Agency	Answer			
Alabama DOT	There is no policy for widening. Specifications for new construction require staggering longitudinal joints six inches apart between layers.			
Arkansas DOT	Vertical faces are inspected to insure they are formed properly and free of dirt and debris. There is also a requirement to apply tack coat onto adjoining vertical faces.			
Colorado DOT	Usually, CDOT will place a good tack coat along the vertical face and overlay the entire roadway with at least two inches of HMA.			
Kentucky DOT	We saw cut a neat vertical face, then use the aforementioned longitudinal edge key to offset a new joint between the new and existing.			
Maryland DOT	No longer an issue. Refer to the specifications section 504.03.07 http://www.marylandroads.com/ohd/part3.pdf			
Mississippi DOT				
Montana DOT	We only have a vertical construction face for the asphalt pavement. All base course and subgrade faces are notched, typically on a 3H:1V slope although this may vary considerably.			
New Jersey DOT	We have not observed any such problem.			
New Jersey Transit Authority	The Authority requires the joint between existing and new construction to either be sawcut vertical or milled vertical prior to placement of new lane pavement to promote the best possible condition for achieving proper compaction along the joint.			
New Jersey Transit Authority	The Authority requires the joint between existing and new construction to either be sawcut vertical or milled vertical prior to placement of new lane pavement to promote the best possible condition for achieving proper compaction along the joint.			
New York DOT	We tack coat the asphalt layers to improve joining with the new asphalt.			
North Carolina DOT				
Tennessee DOT	If the face is not stable it may be skimmed or sawed back to form a workable face.			
Texas DOT Austin	Use miller to construct the vertical face.			
District				
Texas DOT San Antonio District	Temporary shoring if more than 3'.			

A.3.2. How does your agency resolve problems with vertical construction faces at the widening joint? Please briefly describe difficulties and resolutions.

Agency	Answer
Texas DOT	Attempt to stagger joints vertically when practical.
Maintenance	
Division	
Virginia DOT	Heavy tack.
Federal Highway	
Administration	
National Center for	Compaction is difficult. Flowable fill may work good if not too much material required. Stagger joints if
Asphalt Technology	possible. Overbuild top layer slightly so that good compaction can be obtained. Good if the top layer can be placed all the way across existing pavement and widening.
University of Texas	As previously discussed.
CTR	
Lane Construction	I am Contractor. This is usually handled by the Florida DOT. In design build projects we typically try to
Corporation	implement an offset joint detail. On existing projects, if we bring up the issue on existing projects we are usually met with skepticism with the first thought being that we are only looking for a Change Order instead of looking at Best Management Practices.

A.3.3. Has your agency encountered any problems with design cross-sections that do not match existing section? Please briefly describe difficulties and resolutions.

Agency	Yes	No	Comments
Alabama DOT		•	
Arkansas DOT	•		Yes, some existing cross sections do not match what the construction plans show as existing. When fewer asphalt layers exist, where there should be more, the material is removed and replaced with the design layers of material. There has also been cases of more aggregate base course than expected. In that instance, the complete removal of the shoulder was not deleted, and the pavement was built up from sound existing material.
Colorado DOT		•	
Kentucky DOT	•		We use level and wedging (or milling) to correct. We also have had issues where the widening occurs on the high side of a super. The Superpave mixes are so porous compared to the old "I" mixes that it creates some significant water issues.
Maryland DOT	•		Just about every pavement section on the network does not quite match the design. Cores and GPR provide the answer.
Mississippi DOT			
Montana DOT		•	We generally conduct field surveys for widening projects, so the designed cross sections are developed using the field measurements.
New Jersey DOT		•	
New Jersey Transit Authority		•	The Authority has a standard pavement section that has proven to perform well for the traffic conditions on each of the Authority's two roadways (Garden State Parkway and New Jersey turnpike). As such, the Authority does not perform a pavement design for each new construction contract.
New York DOT	•		Different sections behave differently. Frost will lift them differently; their support of traffic is different. A crack will always form between them, allowing water in to deteriorate the materials in the section. Do not do this.
North Carolina DOT		•	

A.3.3. Has your agency encountered any problems with design cross-sections that do not match existing section? Please briefly describe difficulties and resolutions.

Agency	Yes	No	Comments	
Tennessee DOT	•		We do everything possible to avoid this occurrence.	
Texas DOT Austin District	•		In this case, we will schedule a level-up course or profile mill to re-establish the cross slope.	
Texas DOT San Antonio District	•		CRCP in existing vs. flexible at the widened section. Resulted in major failures at the joint.	
Texas DOT Maintenance Division	•		Flex sections adjacent to cement stabilized sections tend to consolidate. Level-up has been primary means of reestablishing cross-slope. HMAC next to a flexible section has created some rutting issues next to the HMAC.	
Virginia DOT	•		See comment above regarding flexible lane additions to composite lanes.	
Federal Highway Administration				
National Center for Asphalt Technology	•		Must keep stiffness of existing pavement and widened area about the same otherwise there will be differential settlement/compaction.	
University of Texas CTR	•			
Lane Construction Corporation	•		All the time. Florida DOT and many other state agencies have minimized the pre-construction survey to verify existing conditions. This causes a lot of issues. The usual DOT position is that the Contractor "figure it out" and perform their work at existing contract unit prices even though most all occurrences are actually true significant changes in work scope and materially different than original bid docs.	

A.3.4. If your agency has encountered any additional construction problems, please list/describe the problem and how it was resolved.

Agency	Answer
Alabama DOT	
Arkansas DOT	We encountered dirt in joints between driving lanes and shoulder in a section scheduled to be widened on an interstate. The "dirty" material was cut back further into the driving lane.
Colorado DOT	
Kentucky DOT	We have had issues with subsurface drainage in super elevated sections. We try to grade the subgrade to the outside to prevent subsurface water from ponding against the old pavement. Also, if only widening for a 2-foot shoulder, it will fall apart if it is a "thin" design. Cars will wander onto that 2-foot shoulder if you build it. We also have had issues where the widening occurs on the high side of a super. The Superpave mixes are so porous compared to the old "I" mixes that it creates some significant water issues.
Maryland DOT	
Mississippi DOT	
Montana DOT	

A.3.4. If your agency has encountered any additional construction problems, please list/describe the problem and how it was resolved.

Agency	Answer
New Jersey DOT	The existing travel lanes are widened depending upon the need of the project. If a full depth shoulder exists along a travel lane, we use the existing shoulder as a travel lane by restriping. If a full depth shoulder is not available, we reconstruct full depth pavement. All reconstruction needs to be completed prior to the treatment on the existing lane. Our specification requires constructing a surface course for the full width travel lane. Therefore, we do not see any longitudinal cold joint on the surface between the existing and widening lane. We have not noticed any problem caused by the joint below surface course. We have observed structural distress in the flexible pavement of the widened lane when the widening section is along the composite pavement and widened section is located within the wheel path. To resolve this problem, we are reconstructing flexible pavement within the wheel path along the existing composite pavement. We also observe longitudinal reflection cracking along the longitudinal joint between existing composite pavement and widened flexible pavement. In order to inhibit this cracking, we are using special mix: e.g. Stone Matrix Asphalt over Binder Rich Intermediate Course for the entire width of travel lane. As discussed above, we do not see any additional surface distress when the flexible widened pavement is along the existing flexible pavement.
New Jersey Transit	
Authority	
New York DOT	
North Carolina DOT	
Tennessee DOT	I'm not sure whether we've encountered such problem.
Texas DOT Austin	
District	
Texas DOT San	
Antonio District	
Texas DOT	Width of widened section can be a problem when equipment is unable to compact material. No solution except
Maintenance Division	make it wider or use of bituminous mixes.
Virginia DOT	
Federal Highway Administration	

A.3.4. If your agency has encountered any additional construction problems, please list/describe the problem and how it was resolved.

Agency	Answer
National Center for	Differential settlement or openings of the longitudinal joint are biggest problems. Key to good performance is
Asphalt Technology	good compaction in all layers.
University of Texas	
CTR	
Lane Construction	
Corporation	

Candidate pavement section is in good condition and exhibits no structural distress:

Flexible pavement section in good condition.

A.4.1. Does your agency have typical pavement section(s) that would be used for this case?

Agency	Yes	No
Alabama DOT		•
Arkansas DOT		•
Colorado DOT		•
Kentucky DOT	•	
Maryland DOT		•

A.4.1. Does your agency have typical pavement section(s) that would be used for this case?

Agency	Yes	No
Mississippi DOT		
Montana DOT		
New Jersey DOT		•
New Jersey Transit Authority		•
New York DOT		•
North Carolina DOT		•
Tennessee DOT		•
Texas DOT Austin District		•
Texas DOT San Antonio District		•
Texas DOT Maintenance Division	•	
Virginia DOT	•	
Federal Highway Administration		
National Center for Asphalt Technology		•
University of Texas CTR	•	
Lane Construction Corporation	•	

A.4.2. What construction techniques and specifications would your agency recommend for this case?

Agency	Answer			
Alabama DOT	Excavate shoulder to depth and width required keeping a neat vertical edge on existing pavement edge, compaction of subgrade to satisfaction of Engineer, place asphalt tack or joint sealant on face of existing pavement, placement and compaction of required asphalt widening layers to satisfaction of Engineer.			
Arkansas DOT	Standard notch and widening specifications.			
Colorado DOT	Saw cut at the white line. Place the required thickness of base course material. Place the required thickness of HMA, and chip seal the entire surface.			
Kentucky DOT	Preferably to widen to one side. Saw cut a vertical face and use a 12-inch longitudinal edge key as mentioned previously.			
Maryland DOT	See earlier discussion.			
Mississippi DOT				
Montana DOT	If we were to widen this section, we would use our standard design and construction techniques, which have been described previously.			
New Jersey DOT				
New Jersey Transit Authority	 Sawcut and/or mill existing edge of pavement to produce vertical joint. Construct apply polymerized joint adhesive to all cold joints. Construct new base course pavement. If pavement section requires an intermediate course lift offset joint from the base course lift. Finally, offset surface course joint from intermed. Course joint. Surface course joint is recommended to be offset from the location of lane striping to allow future joint sealing without obscuring the striping. 			
New York DOT				
North Carolina DOT	widening with 1.5 inches of SF9.5A.			
Tennessee DOT	Match existing pavement section. Increase aggregate base depth, if necessary, to insure layers are aligned.			
Texas DOT Austin	It appears the existing pavement is in good condition. We would add a minimum of 4 foot shoulder, but as			
District	wide as we can afford. If the existing section is structurally adequate for future 20 year ESALs, the widened section would match the adjacent section. If not, we would either rehabilitates the pavement full width and utilize full depth reclamation OR match the existing section, but perform a structural overlay for full width.			

A.4.2. What construction techniques and specifications would your agency recommend for this case?

Agency	Answer
Texas DOT San	Saw cut at edge line, match existing pavement, overlay/surface treatment across all lanes.
Antonio District	
Texas DOT	Same construction specifications. Mostly in typical section of what is built.
Maintenance	
Division	
Virginia DOT	
Federal Highway	
Administration	
National Center for	Use conventional specifications, and pay close attention to compaction. Watch out for segregation.
Asphalt Technology	
University of Texas	In some cases the joint line is moved further into the pavement lane so that the wheel path is not on a joint and
CTR	so that the joint line face is cut in 'good' existing pavement material.
Lane Construction	Usually add 4' or 5' paved shoulders. Enhance safety if vehicles veer from an existing travel lane or provide
Corporation	buffer for bike/pedestrian traffic.

A.4.3. Has your agency encountered any problems with widening sections that were originally in good condition? Please briefly describe difficulties and resolutions.

Agency	Yes	No	Comments
Alabama DOT		•	Excavate shoulder to depth and width required keeping a neat vertical edge on existing pavement edge, compaction of subgrade to satisfaction of Engineer, place asphalt tack or joint sealant on face of existing pavement, placement and compaction of required asphalt widening layers to satisfaction of Engineer.
Arkansas DOT		•	
Colorado DOT		•	
Kentucky DOT	•		For 2 foot widening, ensure full depth pavement and a full depth dga wedge, otherwise vehicles will tear it up.
Maryland DOT		•	
Mississippi DOT			
Montana DOT		•	
New Jersey DOT		•	
New Jersey Transit Authority	•		
New York DOT	•		Eventually, all pavement sections deteriorate. Widenings deteriorate at a different rate than the rest of the pavement, which was placed at a different time. Better or worse, the entire pavement rehabilitation schedule will be driven by the performance of the worst part.
North Carolina DOT		•	
Tennessee DOT		•	
Texas DOT Austin District	•		Years ago, our district had the habit of performing all widening with full depth HMA. In some cases, this either cause drainage issue as the HMA section would dam up water draining transversely OR it would act monolithically and exhibit poor load transfer as the HMA section was much stiffer than the existing pavement section.

A.4.3. Has your agency encountered any problems with widening sections that were originally in good condition? Please briefly describe difficulties and resolutions.

Agency	Yes	No	Comments
Texas DOT San Antonio District		•	
Texas DOT Maintenance Division	•		Same problems as above. Mostly when section is not rehabilitated when widening occurs, the section not touched tends to fail more rapidly (miss-evaluate the condition of the existing section).
Virginia DOT		•	
Federal Highway Administration			
National Center for Asphalt Technology		•	
University of Texas CTR	•		As previously discussed, freezing precipitation, drought, increased heavy truck operations due to energy sector traffic all can result in rapid deterioration of a widened pavement that was previously performing satisfactorily.
Lane Construction Corporation	•		Usually on when tying into existing side streets and driveways. Cross slope issues. Especially in super elevated sections.

Candidate pavement section is in poor condition and exhibits rutting and/or longitudinal cracking.

Flexible pavement section in poor condition.

A.5.1. Does your agency have typical pavement section(s) that would be used for this case?

Agency	Yes	No
Alabama DOT		•
Arkansas DOT		•
Colorado DOT		•
Kentucky DOT		•
Maryland DOT		•

A.5.1. Does your agency have typical pavement section(s) that would be used for this case?

Agency	Yes	No
Mississippi DOT		
Montana DOT		•
New Jersey DOT		•
New Jersey Transit Authority	•	
New York DOT		•
North Carolina DOT		•
Tennessee DOT		•
Texas DOT Austin District		•
Texas DOT San Antonio District		•
Texas DOT Maintenance Division	•	
Virginia DOT	•	
Federal Highway Administration		
National Center for Asphalt Technology		•
University of Texas CTR	•	
Lane Construction Corporation		•

A.5.2. What construction techniques and specifications would your agency recommend for this case?

4	A
Alabama DOT	Answer Excavate shoulder to depth and width required keeping a neat vertical edge on existing pavement edge, compaction of subgrade to satisfaction of Engineer, place asphalt tack or joint sealant on face of existing pavement, placement and compaction of required asphalt widening layers to satisfaction of Engineer.
	Mill existing wearing layer to remove cracking and rutting, possible placement leveling and surface treatment layer followed by new wearing layer.
Arkansas DOT	Pavement and subgrade cores would be gathered at locations of the cracking and the rutting and at locations where the pavement appears to be good. These cores would be analyzed by the Materials Division to determine the cause of the failures. Then, based on the data, Materials Division would make recommendation on how best to correct the problem when the widening project is constructed. Specific techniques and specifications would vary greatly in different projects.
Colorado DOT	Saw cut the joint as close as possible to the outer edge. Place base material. Mill 2 inches off the full-width. Place HMA in widened section, and overlay the entire surface with at least 2 inches of HMA.
Kentucky DOT	We would probably saw cut the vertical face just inside the crack, especially if the "original" old pavement went to this point, but was slowly widened over the years. Resurface the entire pavement and ensure there is no surface joint over the new joint.
	Trenching may also be performed in the area where the widening is to take place. Specific depths and material thicknesses would be determined by funding.
Maryland DOT	This really isn't that bad. It could probably be taken care of with a simple overlay.
Mississippi DOT	
Montana DOT	We don't have a "typical" treatment. They are determined on a case-by-case basis. The basis for the pavement deterioration would be determined (age, subgrade failure, surfacing failure, etc.). If the plant mix surface is distorted with substantial cracking (alligator cracking- worst case), we may elect to pulverize the existing asphalt, in addition to the widening. If the severe deterioration is localized we may elect to dig out and replace portions of the road surface.
New Jersey DOT	

A.5.2. What construction techniques and specifications would your agency recommend for this case?

Agency	Answer
New Jersey Transit Authority	It appears this roadway was widened at some time subsequent to its original construction, hence the longitudinal edge crack present in the photograph, and the widened section may not have been sufficient to handle vehicle loading it is being subject to. As such, any future widening of this roadway should extend back into the existing roadway to capture portion of roadway that may not have been constructed to sufficient cross section.
	 Sawcut and/or mill existing edge of pavement to produce vertical joint. Construct apply polymerized joint adhesive to all cold joints. Construct new base course pavement. If pavement section requires an intermediate course lift offset joint from the base course lift. Finally, offset surface course joint from intermed. Course joint. Surface course joint is recommended to be offset from the location of lane striping to allow future joint sealing without obscuring the striping.
New York DOT	I would try to widen all to one side, to get the widening crack and the existing cracks out of the wheel paths. Drainage should be added, as that pavement section has very poor drainage, which is probably why it is cracking. Mill the surface to get a good layer for the final overlay to bond with.
North Carolina DOT	
Tennessee DOT	A new surface is usually provided (over old and new section) to prevent this. Crack sealing may be accomplished before the final surface is installed.
Texas DOT Austin District	If this is a drought induced longitudinal crack, we perform dynamic cone penetration (DCP) transversely to determine the depth of the shear failure, especially with steep front slopes. We would use geogrid reinforcement in the final section and most likely, we would rehabilitate full width.
Texas DOT San Antonio District	Redesign pavement cross section that would be used for entire roadway. Collect existing materials, run multiple lab tests to identify existing materials reclamation capability, reconstruct entire roadway.
Texas DOT Maintenance Division	Same specificationsin typical sections and plans used. This would occur more frequently in HMAC overlays or widening rather than chip seals over granular base.
Virginia DOT	

A.5.2. What construction techniques and specifications would your agency recommend for this case?

Answer
Must first investigate cause of problem and address cause. If an overlay will correct then suggest that widening
be done and entire area overlayed.
No standard typicals are available, but typical sections have been developed that would address Full depth
reclamation, or other repair options.
Remove all existing asphalt, and re-work aggregate base course. Add paved shoulder. Repave roadway and
shoulders top lift of structural asphalt in one pass.

A.5.3. What inspections are performed, and what quality control testing is performed for this case?

Agency	Answer
Alabama DOT	Customary inspections for good paving practices, smoothness, density (if required). Testing at plant would be customary also, i.e., asphalt content, air voids, VMA, etc.
Arkansas DOT	Cores would be gathered at locations of the cracking and the rutting and at locations where the pavement appears to be good.
Colorado DOT	All typical CDOT requirements for subgrade, base course and HMA.
Kentucky DOT	Cores or cut a trench to see what is occurring through the structure.
Maryland DOT	The same as for any project.
Mississippi DOT	
Montana DOT	Visual, soils surveys, and geotechnical analysis of borings.
New Jersey DOT	
New Jersey Transit Authority	Visual inspection and core sampling of the pavement section to the left of the longitudinal crack. If determined section is consistent across entire roadway, check condition of subsurface soils to determine if high moisture is present below roadway.
New York DOT	During design, a pavement evaluation is performed to determine the best treatment. During construction, inspectors are on hand to ensure proper construction practices are followed.
North Carolina DOT	As given in standard specifications.
Tennessee DOT	Regular density testing and QC are performed on all paving and resurfacing.
Texas DOT Austin District	Visual inspection by TxDOT inspection. Density controlled.
Texas DOT San Antonio District	Density control, approved material sources, material durability testing.
Texas DOT Maintenance Division	If equipment could be fit into the widened section for good compaction, there might be density control as opposed to "ordinary" compaction or compaction by judgment.
Virginia DOT	Doesn't look that bad. Would core to see if lower layers are in good shape and to determine the original full-depth section.

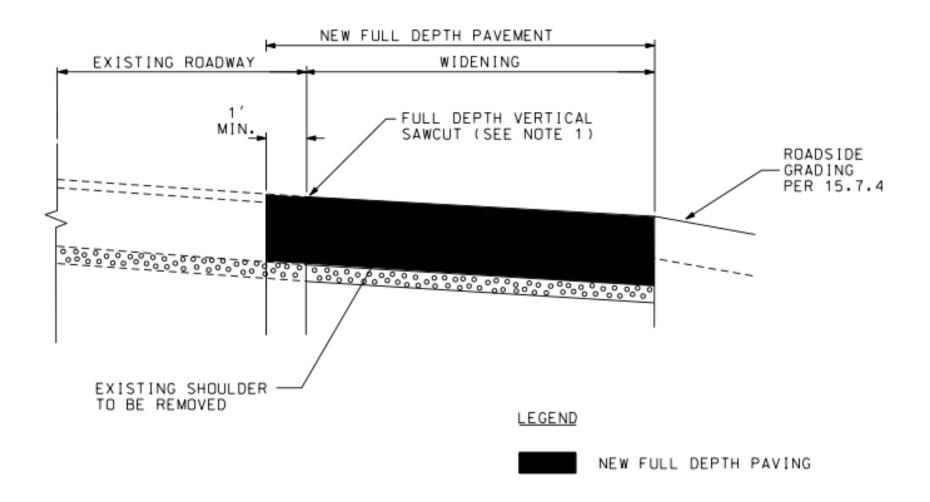
A.5.3. What inspections are performed, and what quality control testing is performed for this case?

Agency	Answer
Federal Highway	
Administration	
National Center for	Must control quality of mix and compaction.
Asphalt Technology	
University of Texas	As previously discussed.
CTR	
Lane Construction	Florida DOT uses QC 2000.
Corporation	

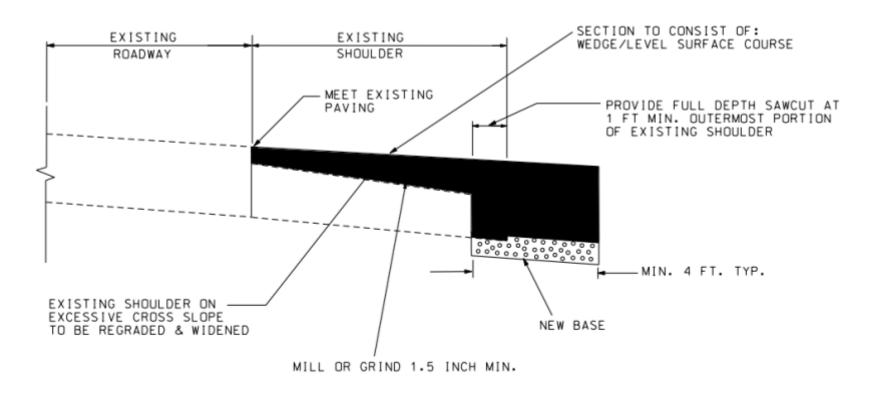
A.5.4. Has your agency encountered any problems following construction of widening sections where the original pavement was in poor condition? Please briefly describe difficulties and resolutions.

Agency	Yes	No	Comments
Alabama DOT		•	
Arkansas DOT	•		Reflective cracking.
Colorado DOT		•	
Kentucky DOT		•	No known situations.
Maryland DOT		•	
Mississippi DOT			
Montana DOT			I'm sure we have blown our assessment of pavement condition in certain cases. The difficulties include increased maintenance costs and additional expense in design and paving projects. We would follow the treatments described above.
New Jersey DOT		•	If existing pavement is structurally in poor condition, we consider structural improvement of the existing pavement. If existing pavement is in poor condition other than structurally, we select appropriate treatment for the improvement of existing pavement and the same treatment is applied on the widening area to achieve equal performance life.
New Jersey Transit Authority		•	
New York DOT	•		These are always a problem. The better answer for these pavements is complete reconstruction. Widening a bad pavement is always a bad idea.
North Carolina DOT	•		
Tennessee DOT		•	
Texas DOT Austin District	•		

A.5.4. Has your agency encountered any problems following construction of widening sections where the original pavement was in poor condition? Please briefly describe difficulties and resolutions.

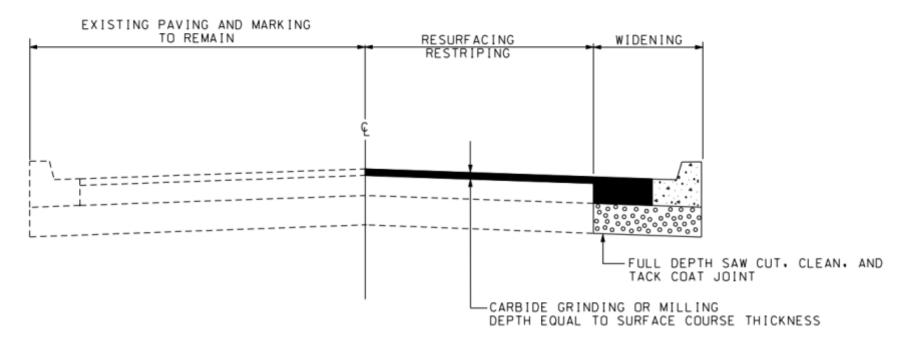

Agency	Yes	No	Comments
Texas DOT San Antonio District		•	
Texas DOT Maintenance Division	•		Usually lower volume. Flexible base next to existing is most typical.
Virginia DOT	•		Yes, original pavement was in poor condition; design fix was either revisited or remained inadequate.
Federal Highway Administration			
National Center for Asphalt Technology		•	
University of Texas CTR	•		Deformation of the existing pavement adjacent to the joint line and other performance problems.
Lane Construction Corporation	•		Common practice in Florida is not to remove all structural asphalt from existing travel lanes. On roads in good condition this ok. On roads in poor condition this is not. To ensure the new widening and existing roadway perform within the same expected life cycle, the structural asphalt of both pavement sections should be similar in age and design.

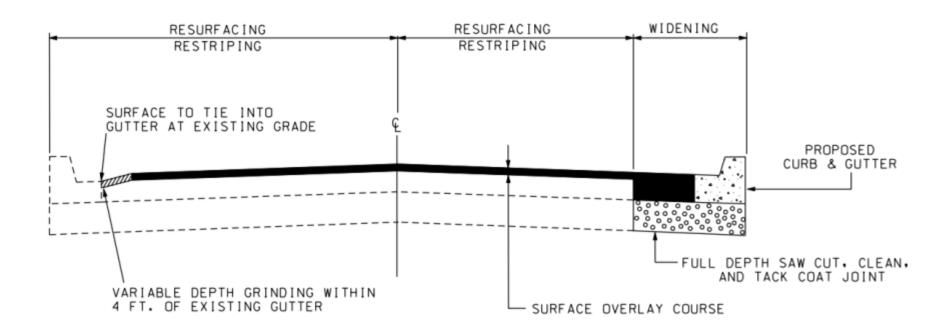
APPENDIX B. SAMPLE FLEXIBLE PAVEMENT WIDENING DESIGN CROSS SECTIONS


B.1. Sample Flexible Pavement Widening Design Cross Sections

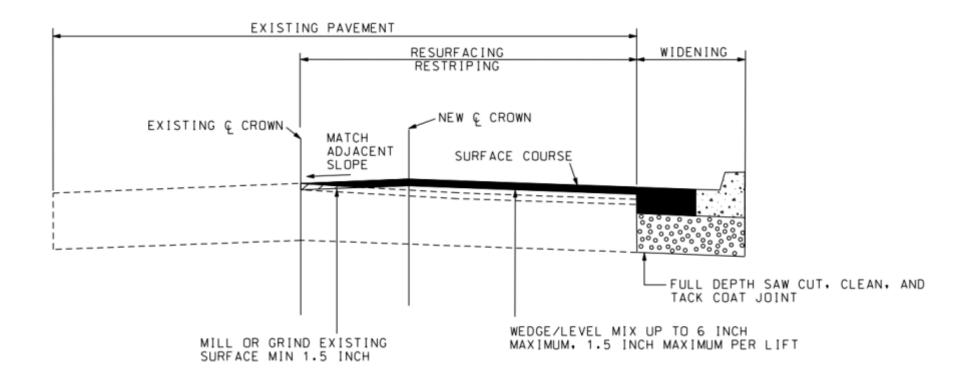
Flexible pavement widening cross sections routinely used in Maryland, Texas, and New Jersey are provided in Figure B-1 through Figure B-12.

B.1.1. Maryland Flexible Pavement Widening Cross Sections

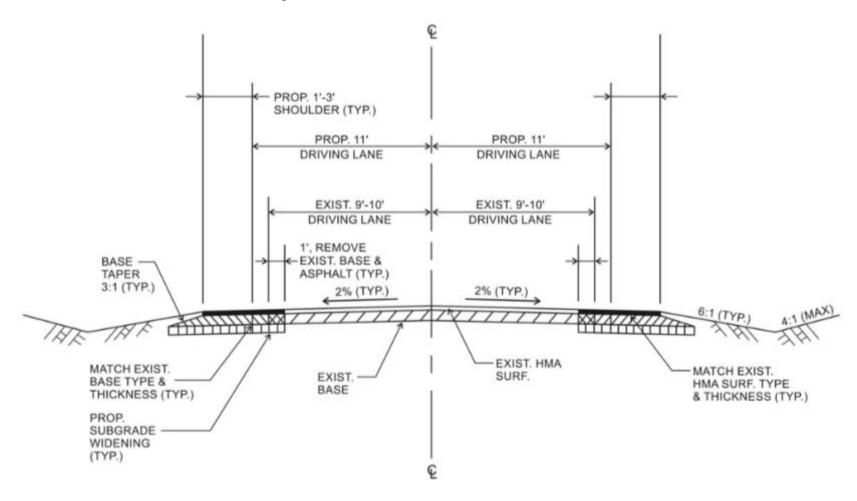

B-1. Typical Shoulder Removal and Full Depth Widening [28]



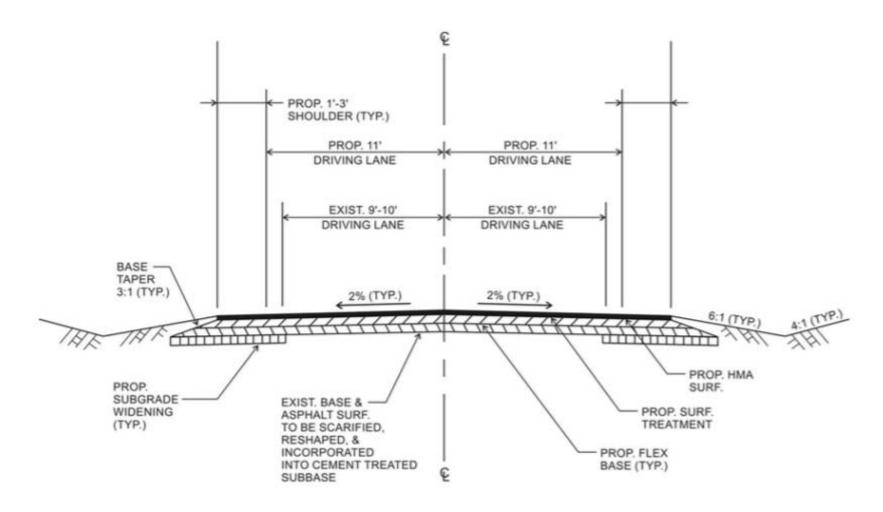
B-2. Typical Shoulder Build-up Section [28]


UNAFFECTED SIDE DEVELOPMENT SIDE

B-3. Typical Half Section Resurfacing (Mill & Overlay) [28]

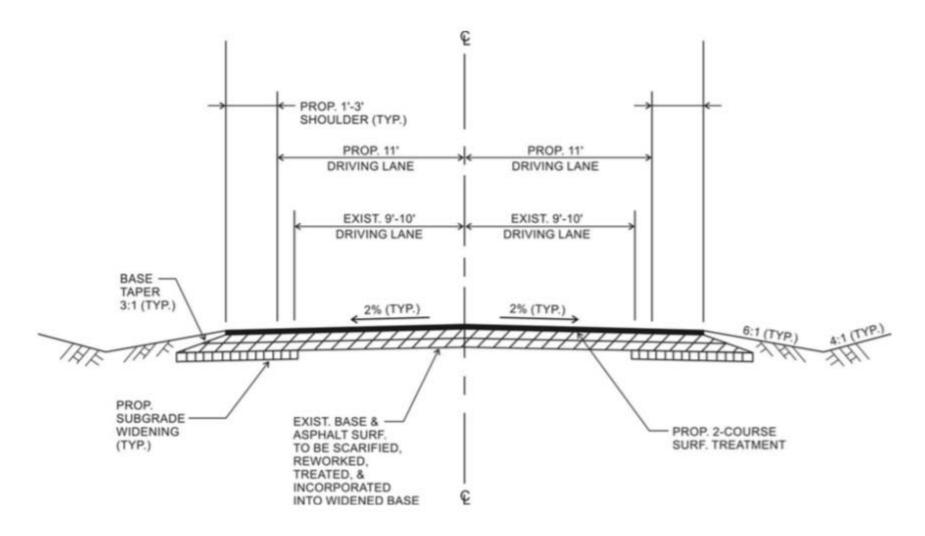


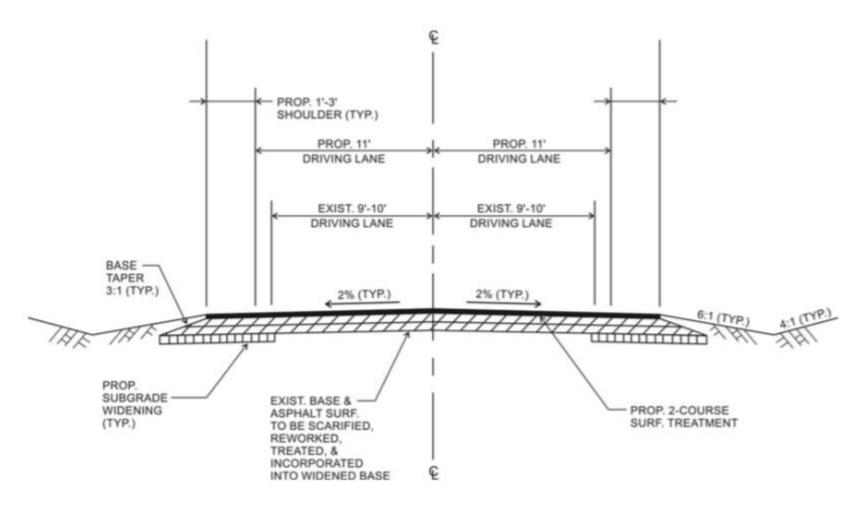
B-4. Typical Full Section Overlay [28]



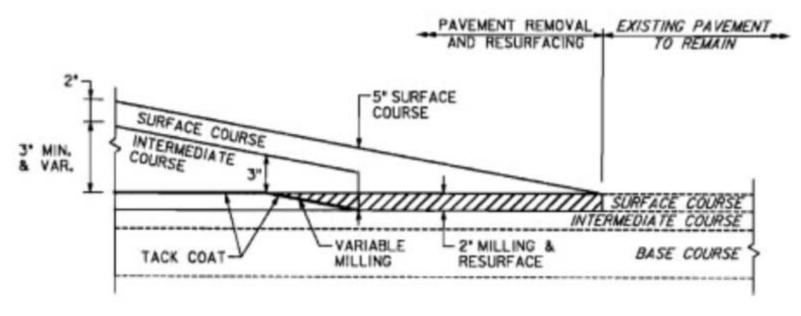
B-5. Typical Wedge/Level and Overlay for Crown Shift [28]

B.1.2. Texas Flexible Pavement Widening Cross Sections

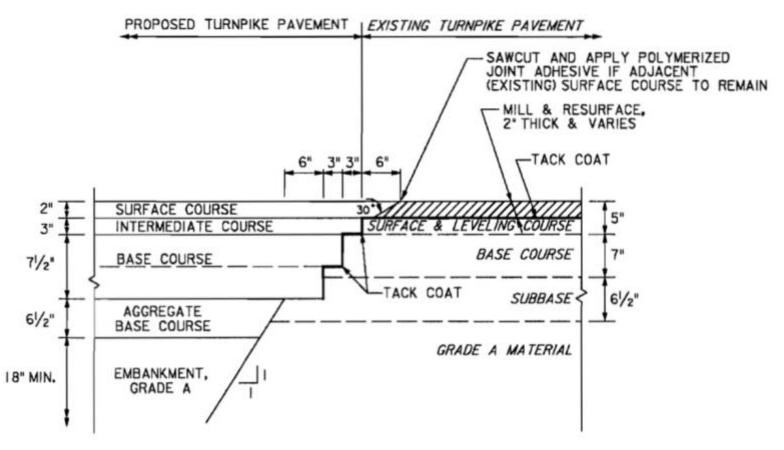

B-6. Typical Section for Widening Flexible Pavements in Good Condition [15]


B-7. Typical Section for Widening Flexible Pavements in Poor Condition Using Full Depth Recycling [15]

B-8. Typical Section for Widening Flexible Pavements in Poor Condition on Highly Plastic Subgrade [15]



B-9. Typical Section for Widening Flexible Pavements in Poor Condition by Reworking the Existing Base [15]



B-10. Typical Section for Widening Jointed Concrete Pavements [15]

B.1.3. New Jersey Turnpike Authority Pavement Widening Cross Sections

B-11.Payment Removal and Reconstruction Detail [24]

B-12.New Pavement Interface with Existing Pavement Section [24]